Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Safely maximizing extent of resection has become the central goal in glioma surgery. Especially in eloquent cortex, the goal of maximal resection is balanced with neurological risk. As new technologies emerge in the field of neurosurgery, the standards for maximal safe resection have been elevated. Fluorescence-guided surgery, intraoperative magnetic resonance imaging, and microscopic imaging methods are among the most well-validated tools available to enhance the level of accuracy and safety in glioma surgery. Each technology uses a different characteristic of glioma tissue to identify and differentiate tumor tissue from normal brain and is most effective in the context of anatomic, connectomic, and neurophysiologic context. While each tool is able to enhance resection, multiple modalities are often used in conjunction to achieve maximal safe resection. This paper reviews the mechanism and utility of the major adjuncts available for use in glioma surgery, especially in tumors within eloquent areas, and puts forth the foundation for a unified approach to how leverage currently available technology to ensure maximal safe resection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510852 | PMC |
http://dx.doi.org/10.1093/neuros/nyaa475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!