Blocking immune checkpoint pathways with an antibody or small interfering RNA (siRNA) has become a promising method to reactivate antitumor responses for cancer treatment. However, both blockade strategies achieve only temporary inhibition of these immune checkpoints. Herein, a photoswitched CRISPR/Cas9 system for genomic disruption of the PD-L1 gene is developed to achieve permanent blockade of the PD-1/PD-L1 pathway; this system is constructed by using a photoactivated self-degradable polyethyleneimine derivative and the plasmid pX330/sgPD-L1 (expression of the Cas9 protein and single-guide RNA targeting PD-L1). Under light irradiation, this photoswitched CRISPR/Cas9 system efficiently genetically disrupts the PD-L1 gene in not only bulk cancer cells but also cancer stem-like cells. As a result, the photoswitched CRISPR/Cas9 system significantly increases the infiltration of CD8 T cells into tumor tissue, leading to effective activation of a T cell-mediated antitumor response against cancer cells and cancer stem-like cells. This study provides an alternative strategy to block the PD-1/PD-L1 pathway for efficacious immune checkpoint therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202004879DOI Listing

Publication Analysis

Top Keywords

crispr/cas9 system
16
pd-l1 gene
12
cancer cells
12
cells cancer
12
cancer stem-like
12
stem-like cells
12
photoswitched crispr/cas9
12
cancer
8
immune checkpoint
8
pd-1/pd-l1 pathway
8

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!