AI Article Synopsis

  • Mechanical stretch enhances osteoblast differentiation and bone regeneration, with a focus on mTOR and NF-κB interactions as key mediators.
  • Mechanical stretching leads to increased expression of osteoblast markers and activates mTOR and NF-κB pathways in MG-63 cells.
  • Blocking mTOR hinders osteogenesis, while inhibiting NF-κB boosts it, revealing a complex relationship essential for osteoblast function under mechanical stress.

Article Abstract

Mechanical stretch is known to promote osteoblast differentiation in vitro and accelerate bone regeneration in vivo, whereas the relevant mechanism remains unclear. Recent studies have shown the importance of reciprocal interactions between mammalian target of rapamycin (mTOR) and nuclear factor kappa B (NF-κB; two downstream molecules of Akt) in the regulation of tumor cells. Thus, we hypothesize that mTOR and NF-κB as well as their interconnection play a critical role in mediating stretch-induced osteogenic differentiation in osteoblasts. We herein found that mechanical stretch (10% elongation at six cycles/min) significantly promoted the expression of osteoblast differentiation-related markers (including ALP, BMP2, Col1α, OCN, and Runx2) in osteoblast-like MG-63 cells, accompanied by increased mTOR phosphorylation and NF-κB p65 phosphorylation and nuclear translocation. Blockade of mTOR by antagonist or small interfering RNA suppressed osteogenesis-related gene expression in response to mechanical stretch, whereas inhibition of NF-κB further increased stretch-induced osteoblast differentiation. Moreover, inhibition of mTOR decreased the phosphorylation of NF-κB, and blockade of NF-κB reduced the mTOR activation in MG63 cells under mechanical stretch. Coinhibition of mTOR and NF-κB abolishes the alteration of osteogenic differentiation induced by single mTOR or NF-κB inhibition under mechanical stretch, which is equivalent to the noninhibition level for osteoblasts under mechanical stretch. The expression levels of osteogenic differentiation in osteoblasts after inhibition of Akt were similar to those after co-inhibition of mTOR and NF-κB under mechanical stretch. This study for the first time reveals the reciprocal interconnection between mTOR and NF-κB in osteoblasts under mechanical stretch and indicates that mTOR and NF-κB as well as their interactions play a key role in the regulation of cellular homeostasis of osteoblasts in response to mechanical stretch. These findings are helpful for enriching our basic knowledge of the molecular mechanisms of osteoblast mechanotransduction, and also providing insight into the clinical therapeutic modality associated with mechanical stretch (e.g., distraction osteogenesis).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.30184DOI Listing

Publication Analysis

Top Keywords

mechanical stretch
40
mtor nf-κb
28
nf-κb
12
osteoblast differentiation
12
osteogenic differentiation
12
osteoblasts mechanical
12
mechanical
11
mtor
11
stretch
10
nf-κb well
8

Similar Publications

Bioinspired Smart Triboelectric Soft Pneumatic Actuator-Enabled Hand Rehabilitation Robot.

Adv Mater

January 2025

Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.

Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.

View Article and Find Full Text PDF

Damage mechanisms are a key factor in materials science and are essential for understanding and predicting the behavior of materials under complex loading conditions. In this paper, the influence of different directions, different rates and different model parameters on the mechanical behavior of AZ31 magnesium alloy during the tensile process is investigated based on the secondary development of the VUMAT user subroutine based on the GTN damage model and verified by the tensile experiments at different loading rates and in different directions. The results show that AZ31 magnesium alloy exhibits significant differences in mechanical properties in radial and axial stretching, where the yield strength is lower in the radial direction than in the axial direction, and the elongation is the opposite.

View Article and Find Full Text PDF

This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.

View Article and Find Full Text PDF

Background: Double cycling with breath-stacking (DC/BS) during controlled mechanical ventilation is considered potentially injurious, reflecting a high respiratory drive. During partial ventilatory support, its occurrence might be attributable to physiological variability of breathing patterns, reflecting the response of the mode without carrying specific risks.

Methods: This secondary analysis of a crossover study evaluated DC/BS events in hypoxemic patients resuming spontaneous breathing in cross-over under neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV +), and pressure support ventilation (PSV).

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!