SWI/SNF chromatin remodelers modify the position and spacing of nucleosomes and, in humans, are linked to cancer. To provide insights into the assembly and regulation of this protein family, we focused on a subcomplex of the Saccharomyces cerevisiae RSC comprising its ATPase (Sth1), the essential actin-related proteins (ARPs) Arp7 and Arp9 and the ARP-binding protein Rtt102. Cryo-EM and biochemical analyses of this subcomplex shows that ARP binding induces a helical conformation in the helicase-SANT-associated (HSA) domain of Sth1. Surprisingly, the ARP module is rotated 120° relative to the full RSC about a pivot point previously identified as a regulatory hub in Sth1, suggesting that large conformational changes are part of Sth1 regulation and RSC assembly. We also show that a conserved interaction between Sth1 and the nucleosome acidic patch enhances remodeling. As some cancer-associated mutations dysregulate rather than inactivate SWI/SNF remodelers, our insights into RSC complex regulation advance a mechanistic understanding of chromatin remodeling in disease states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855068PMC
http://dx.doi.org/10.1038/s41594-020-00528-8DOI Listing

Publication Analysis

Top Keywords

insights assembly
8
chromatin remodeling
8
rsc
5
sth1
5
structural insights
4
assembly function
4
function rsc
4
rsc chromatin
4
remodeling complex
4
complex swi/snf
4

Similar Publications

Complete genome sequence of Pseudarthrobacter sp. NIBRBAC000502770 from coal mine of Hongcheon on Republic of Korea.

BMC Genom Data

January 2025

Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.

Objectives: The data were collected to obtain the complete genome sequence of Pseudarthrobacter sp. NIBRBAC000502770, isolated from the rhizosphere of Sasamorpha in a heavy metal-contaminated coal mine in Hongcheon, Republic of Korea. The objective was to explore the strain's genetic potential for plant growth promotion and heavy metal resistance, particularly arsenate and copper.

View Article and Find Full Text PDF

Phragmites australis is a globally distributed grass species (Poaceae) recognized for its vast biomass and exceptional environmental adaptability, making it an ideal model for studying wetland ecosystems and plant stress resilience. However, genomic resources for this species have been limited. In this study, we assembled a chromosome-level reference genome of P.

View Article and Find Full Text PDF

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Molecular determinants of condensate composition.

Mol Cell

January 2025

Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany. Electronic address:

Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces.

View Article and Find Full Text PDF

A tale of two strands: Decoding chromatin replication through strand-specific sequencing.

Mol Cell

January 2025

Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!