AI Article Synopsis

  • * Environmental pollutants, particularly endocrine-disrupting chemicals (EDCs), can negatively impact brain development, leading to changes in puberty timing and long-term fertility issues.
  • * The Review discusses how EDCs affect the neuroendocrine system in reproduction, highlighting cellular and molecular changes observed in studies, predominantly using rodent models.

Article Abstract

The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41574-020-00436-3DOI Listing

Publication Analysis

Top Keywords

cellular molecular
8
female ovulatory
8
ovulatory cycle
8
neuroendocrine control
8
control reproduction
8
molecular features
4
features edc
4
edc exposure
4
exposure consequences
4
consequences gnrh
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!