Direct lysosome-based autophagy of lipid droplets in hepatocytes.

Proc Natl Acad Sci U S A

Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905;

Published: December 2020

Hepatocytes metabolize energy-rich cytoplasmic lipid droplets (LDs) in the lysosome-directed process of autophagy. An organelle-selective form of this process (macrolipophagy) results in the engulfment of LDs within double-membrane delimited structures (autophagosomes) before lysosomal fusion. Whether this is an exclusive autophagic mechanism used by hepatocytes to catabolize LDs is unclear. It is also unknown whether lysosomes alone might be sufficient to mediate LD turnover in the absence of an autophagosomal intermediate. We performed live-cell microscopy of hepatocytes to monitor the dynamic interactions between lysosomes and LDs in real-time. We additionally used a fluorescent variant of the LD-specific protein (PLIN2) that exhibits altered fluorescence in response to LD interactions with the lysosome. We find that mammalian lysosomes and LDs undergo interactions during which proteins and lipids can be transferred from LDs directly into lysosomes. Electron microscopy (EM) of primary hepatocytes or hepatocyte-derived cell lines supports the existence of these interactions. It reveals a dramatic process whereby the lipid contents of the LD can be "extruded" directly into the lysosomal lumen under nutrient-limited conditions. Significantly, these interactions are not affected by perturbations to crucial components of the canonical macroautophagy machinery and can occur in the absence of double-membrane lipoautophagosomes. These findings implicate the existence of an autophagic mechanism used by mammalian cells for the direct transfer of LD components into the lysosome for breakdown. This process further emphasizes the critical role of lysosomes in hepatic LD catabolism and provides insights into the mechanisms underlying lipid homeostasis in the liver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768785PMC
http://dx.doi.org/10.1073/pnas.2011442117DOI Listing

Publication Analysis

Top Keywords

lipid droplets
8
autophagic mechanism
8
lysosomes lds
8
lds
6
hepatocytes
5
lysosomes
5
interactions
5
direct lysosome-based
4
lysosome-based autophagy
4
lipid
4

Similar Publications

In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants.

View Article and Find Full Text PDF

The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila.

Cell Rep

December 2024

Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China. Electronic address:

Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan.

View Article and Find Full Text PDF

Rational Development of a Lipid Droplets and Hypochlorous Acid In-Sequence Responsive Fluorescent Probe for Accurate Imaging of Atherosclerotic Plaques.

Anal Chem

December 2024

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.

View Article and Find Full Text PDF

Lipophagy is a selective type of autophagy where lipid droplets are targeted to the lysosome/vacuole for degradation. Even though lipophagy has been reported in various species, many questions remain unaddressed. How are the lipid droplets sequestered to the lysosome? What is the lipophagy receptor(s)? How is this receptor(s) regulated at a posttranslational level? A new collaborative study among several universities conducted on mouse and human hepatocytes sheds light on these questions, deciphering the lipophagy mechanism in the liver.

View Article and Find Full Text PDF

This study aimed to investigate the effects of short-term exposure of Bisphenol A (BPA) on the growth and lactation performance, blood parameters, and milk composition of lactating rabbits and explore its potential molecular mechanisms. Eight lactating rabbits with similar body weight were selected and randomly divided into the experimental group (BPA) and the control group (Ctrl). The group BPA was orally administered 80 mg/kg/day BPA on the 15th day postpartum, while the group Ctrl received a corresponding volume of vehicle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!