Bacteria alternate between being free-swimming and existing as members of sessile multicellular communities called biofilms. The biofilm lifecycle occurs in three stages: cell attachment, biofilm maturation, and biofilm dispersal. biofilms are hyperinfectious, and biofilm formation and dispersal are considered central to disease transmission. While biofilm formation is well studied, almost nothing is known about biofilm dispersal. Here, we conducted an imaging screen for mutants that fail to disperse, revealing three classes of dispersal components: signal transduction proteins, matrix-degradation enzymes, and motility factors. Signaling proteins dominated the screen and among them, we focused on an uncharacterized two-component sensory system that we term DbfS/DbfR for dispersal of biofilm sensor/regulator. Phospho-DbfR represses biofilm dispersal. DbfS dephosphorylates and thereby inactivates DbfR, which permits dispersal. Matrix degradation requires two enzymes: LapG, which cleaves adhesins, and RbmB, which digests matrix polysaccharides. Reorientation in swimming direction, mediated by CheY3, is necessary for cells to escape from the porous biofilm matrix. We suggest that these components act sequentially: signaling launches dispersal by terminating matrix production and triggering matrix digestion, and subsequent cell motility permits escape from biofilms. This study lays the groundwork for interventions aimed at modulating biofilm dispersal to ameliorate disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768729PMC
http://dx.doi.org/10.1073/pnas.2021166117DOI Listing

Publication Analysis

Top Keywords

biofilm dispersal
20
biofilm
11
dispersal
10
enzymes motility
8
biofilm formation
8
matrix
5
identification signaling
4
signaling pathways
4
pathways matrix-digestion
4
matrix-digestion enzymes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!