Selective beta-cell toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin on isolated pancreatic islets.

Chemosphere

Department of Translational Research and New Technologies in Medicine and Surgery, Italy; CIME (Centro Interdipartimentale di Microscopia Elettronica), University of Pisa, Pisa, Italy. Electronic address:

Published: February 2021

An association between exposure to environmental pollutants and diabetes risk has been repeatedly shown by epidemiological studies. However, the biological basis of this association still need to be clarified. In this research we explored the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on isolated pancreatic islets. After 1, 6 and 24 h exposure of isolated islets to different concentrations (1-50 nM) of TCDD we assayed: i) cell survival; ii) ultrastructure; iii) glucose-stimulated insulin secretion (GSIS); iv) expression of selected genes. A significant, dose-related increase of both necrosis and apoptosis was observed isolated rat islets after 24 h exposure to TCDD. The electron microscopic analysis revealed, at the same time point, the presence of several ultrastructural alterations (mitochondrial swelling, increased mitophagy, dilation of the endoplasmic reticulum) that, very interestingly, were exclusively observed in beta cells and not in other endocrine cells. Similar results were obtained in isolated human islets. GSIS was rapidly (1 h) and persistently (6 and 24 h) decreased by TCDD exposure even at the smallest concentration (1 nM). TCDD exposure significantly affected gene expression in isolated islets: Glut2, Gck, Bcl-xL, MafA, Pdx1 FoxO1 and IRE1 gene expression was significantly decreased, whereas Puma, DP5, iNOS and Chop gene expression was significantly increased after 6 h exposure to TCDD. In conclusion, our results clearly indicated that pancreatic beta cells represent not only a sensitive but also a specific target of the toxic action of dioxin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.129103DOI Listing

Publication Analysis

Top Keywords

tcdd exposure
12
gene expression
12
isolated pancreatic
8
pancreatic islets
8
exposure isolated
8
islets 24 h
8
24 h exposure
8
isolated islets
8
exposure tcdd
8
beta cells
8

Similar Publications

Dioxins and analogous derivatives pose significant concerns due to their impact on human health through both acute and prolonged exposures. They have the potential to resist natural degradation processes; therefore, they tend to accumulate in water, sediments, fish, meat, and human adipose tissue. As a result, concerns to both environmental and human health arise among the scientific community and environmental health organizers.

View Article and Find Full Text PDF

Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice.

Ecotoxicol Environ Saf

January 2025

Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.

View Article and Find Full Text PDF

Exposure to environmental contaminants can result in profound effects on the host immune system. One class of environmental toxicants, known as dioxins, are persistent environmental contaminants termed "forever chemicals". The archetype toxicant from this group of chemicals is 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), an immunotoxicant that activates the aryl-hydrocarbon receptor pathway leading to a variety of changes in immune cell responses.

View Article and Find Full Text PDF

Among the various environmental pollutants, dioxin, a highly toxic and widely used compound, is associated with numerous adverse health effects, including a potentially toxic multigenerational effect. Understanding the mechanisms by which dioxin exposure can affect sperm epigenetics is critical to comprehending the potential consequences for offspring health and development. This study investigates the possible association between weighted epimutations, hypothesized as markers of epigenetic drift, and dioxin exposure in sperm tissues.

View Article and Find Full Text PDF

Polychlorinated dibenzo-dioxin/furan and polychlorinated biphenyl concentrations in the human milk of individuals living near municipal waste incinerators in the UK: Findings from the Breast milk, Environment, Early-life, and development (BEED) human biomonitoring study.

Environ Res

December 2024

Department of Epidemiology and Biostatistics, Imperial College London, London, UK; NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK; MRC Centre for Environment and Health, Imperial College London, London, UK; National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, London, UK. Electronic address:

The objective of this study is to report recent PCDD/F and PCB human milk concentrations in the United Kingdom (UK) and relate these to two proxies for exposure to municipal waste incinerator (MWI) emissions. As part of the Breast milk, Environment, Early-life, and Development (BEED) study, primiparous individuals were recruited from within 20 km of English MWIs between 2013 and 2015 and asked to provide human milk samples. The samples were analysed for quantitative concentrations of 17 PCDD/F and 12 PCB congeners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!