The aim of this work was to investigate the role of biochemical digestion on softening and disintegration kinetics of pH 5 and pH 9 egg white gel (EWGs) during in vitro gastric digestion. EWG samples (5 mm length cubes) underwent in vitro digestion by incubation in simulated gastric fluid at different time intervals for up to 240 min. The hardness was measured using a Texture Analyser; softening kinetics was fit to the Weibull model. Results revealed that pH 9 EWG had the highest softening halftime (458 ± 86 min), indicating the slowest softening, whereas pH 5 EWG had the lowest softening halftime (197 ± 12 min), indicating the quickest softening. The digested samples were immediately exposed to mechanical forces generated by the human gastric simulator (HGS) for 10 min to investigate the influence of gastric juice on the breakdown behaviour of EWG cubes. The breakdown behaviour of the disintegrated samples was characterized by fitting the cumulative distributions of particle surface areas to a mixed Weibull function (R > 0.99). The weight of fine particles (α) showed that regardless of gastric juice diffusion, the pH 5 EWG (α = 0.22 ± 0.03) disintegrated into more fine particles than those resulting from pH 9 EWG disintegration (α = 0.07 ± 0.02). As expected, the diffusion of gastric juice enhanced erosion of the EWG particles into fine particles. Result obtained from the particle surface area distribution is in good agreement with the softening kinetics of EWGs during simulated in vitro gastric phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2020.109782 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!