: Chronic fibrotic disorders are challenging clinical problems. The major challenge is the identification of specific targets expressed selectively in fibrotic tissues. Collagen accumulation is the hallmark fibrosis. HSP47 is a collagen-specific chaperon with critical role in collagen folding. This review discusses the anti-fibrotic potential of HSP47. : This review compiles data retrieved from the PubMed database with keywords 'HSP47+fibrosis' from 01/2005 to 06/2020. We examined 1) collagen biology and its role in fibrotic diseases, 2) HSP47 role in fibrosis, 3) HSP47 inhibition strategies and 4) clinical investigations. The identification of the HSP47-collagen binding site led to the development of methods to screen HSP47 inhibitors with anti-fibrotic potential. Specific delivery systems of HSP47 siRNA to fibrotic tissue reduced collagen production/secretion associated with fibrosis inhibition in preclinical models. This strategy is about to be tested in clinical trials. : As a collagen-specific chaperon, HSP47 is a promising therapeutic target in fibrosis. Preclinical models have shown encouraging anti-fibrotic results. Anti-HSP47 strategies need to be further evaluated in clinical trials. The increase in circulating-HSP47 in lung fibrosis patients highlights the potential of HSP47 as a noninvasive biomarker and may represent an important step toward personalized medicine in fibrotic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14728222.2021.1861249 | DOI Listing |
Biology (Basel)
December 2024
Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey.
HER2-positive breast cancer has an aggressive tumour progression among breast cancers characterized by the overexpression of HER2. Trastuzumab is an FDA-approved drug and has significantly improved outcomes for patients; however, drug resistance remains a major challenge. Tumour heterogeneity, describing genetic, epigenetic, and phenotypic differences within and between tumours, complicates tumour treatment and contributes to drug resistance.
View Article and Find Full Text PDFInt J Pharm
January 2025
National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China. Electronic address:
Lipid nanoparticle (LNP)-mediated RNA delivery holds significant potential for the treatment of various liver diseases. Ionizable lipids play a crucial role in the formulation of LNPs and directly influence their delivery efficiency. In this study, we introduced an innovative concept by incorporating an ether bond into the hydrophobic tail of ionizable lipids for the first time.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China. Electronic address:
T-2 toxin contamination in food and feed is a growing global concern, with its toxic effects on developing cartilage remaining poorly understood. In this study, we constructed an animal model using 4-week-old male Sprague-Dawley rats, which were administered T-2 toxin (200 ng/g body weight per day) by gavage for one month. Histological analysis showed a significant reduction in hypertrophic chondrocytes and increased caspase-3 expression and TUNEL staining in the deep cartilage zone of T-2 toxin-treated rats.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!