Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein intake is considered important in the maintenance of muscle health in ageing. However, both the source and mealtime distribution of protein might affect the intake of protein and its effect on muscle protein synthesis. In this study, protein intake, mealtime distribution of protein, and seafood consumption were assessed in 92 older adults (aged 65+), and associations with physical performance (Short Physical Performance Battery (SPPB)), grip strength and gait speed were assessed in a multiple linear regression analysis. The participants had a mean age of 73 ± 8.9 years. Mean protein intake was 1.1 g/kg body weight. Protein intake was well distributed, with coefficient of variance between meals (CV meals) 0.6 ± 0.3. However, dinner had the highest protein intake. No associations were found between the nutrition factors and physical performance or strength; however, this result might have been caused by a ceiling effect in the chosen test batteries, as the mean score on SPPB was 10.3 ± 2.7, and 48.9% of the participants reached the top score of 12 points. Mean grip strength was 44.4 ± 9.4 kg (men) and 26.2 ± 6.8 kg (women). Mean gait speed was 1.0 ± 0.3 m/s. The interaction analysis suggests that there might be gender differences in the effect of seafood consumption on gait speed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768430 | PMC |
http://dx.doi.org/10.3390/geriatrics5040100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!