A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Labeling Method for Financial Time Series Prediction Based on Trends. | LitMetric

A Labeling Method for Financial Time Series Prediction Based on Trends.

Entropy (Basel)

The College of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China.

Published: October 2020

Time series prediction has been widely applied to the finance industry in applications such as stock market price and commodity price forecasting. Machine learning methods have been widely used in financial time series prediction in recent years. How to label financial time series data to determine the prediction accuracy of machine learning models and subsequently determine final investment returns is a hot topic. Existing labeling methods of financial time series mainly label data by comparing the current data with those of a short time period in the future. However, financial time series data are typically non-linear with obvious short-term randomness. Therefore, these labeling methods have not captured the continuous trend features of financial time series data, leading to a difference between their labeling results and real market trends. In this paper, a new labeling method called "continuous trend labeling" is proposed to address the above problem. In the feature preprocessing stage, this paper proposed a new method that can avoid the problem of look-ahead bias in traditional data standardization or normalization processes. Then, a detailed logical explanation was given, the definition of continuous trend labeling was proposed and also an automatic labeling algorithm was given to extract the continuous trend features of financial time series data. Experiments on the Shanghai Composite Index and Shenzhen Component Index and some stocks of China showed that our labeling method is a much better state-of-the-art labeling method in terms of classification accuracy and some other classification evaluation metrics. The results of the paper also proved that deep learning models such as LSTM and GRU are more suitable for dealing with the prediction of financial time series data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597331PMC
http://dx.doi.org/10.3390/e22101162DOI Listing

Publication Analysis

Top Keywords

time series
36
financial time
32
series data
20
labeling method
16
series prediction
12
continuous trend
12
time
10
labeling
9
series
9
financial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!