To eliminate the influence of white noise in partial discharge (PD) detection, we propose a novel method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and approximate entropy (ApEn). By introducing adaptive noise into the decomposition process, CEEMDAN can effectively separate the original signal into different intrinsic mode functions (IMFs) with distinctive frequency scales. Afterward, the approximate entropy value of each IMF is calculated to eliminate noisy IMFs. Then, correlation coefficient analysis is employed to select useful IMFs that represent dominant PD features. Finally, real IMFs are extracted for PD signal reconstruction. On the basis of EEMD, CEEMDAN can further improve reconstruction accuracy and reduce iteration numbers to solve mode mixing problems. The results on both simulated and on-site PD signals show that the proposed method can be effectively employed for noise suppression and successfully extract PD pulses. The fusion algorithm combines the CEEMDAN algorithm and the ApEn algorithm with their respective advantages and has a better de-noising effect than EMD and EEMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597099 | PMC |
http://dx.doi.org/10.3390/e22091039 | DOI Listing |
Sci Rep
January 2025
School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
Collective behavior in biological systems emerges from local interactions among individuals, enabling groups to adapt to dynamic environments. Traditional modeling approaches, such as bottom-up and top-down models, have limitations in accurately representing these complex interactions. We propose a novel potential field mechanism that integrates local interactions and environmental influences to explain collective behavior.
View Article and Find Full Text PDFWe detail here the general principle of a self-adaptive oscillator in which the intertwined operation of a 100-m-long active optical resonator and a standard semiconductor laser mutually coupled by stimulated Brillouin scattering offers an ultimate high spectral purity. Single frequency operation of this self-adaptive photonic oscillator is achieved without any servo locking or stabilization electronics. In free running operation, this principle leads to a Lorentzian linewidth of 40 mHz and a Flicker noise linewidth of 200 Hz for 0.
View Article and Find Full Text PDFThis paper presents an adaptive fast Fourier transform (adaptive FFT) demodulation scheme, aimed at enhancing the precision and noise suppression capability of signal processing in fiber-optic interferometric sensors. By adaptively optimizing the length of the acquired spectrum and dynamically adjusting the frequency domain resolution, the proposed scheme can precisely calculate the eigenfrequency of the reflected spectrum. Therefore, the adaptive FFT demodulation scheme can effectively enhance the extraction ability of phase quadrature demodulation signal.
View Article and Find Full Text PDFIn space-based gravitational wave detection, establishing ultra-long-distance and ultra-high-precision laser links between satellites is achieved through the laser acquisition and tracking system. The laser spot centroid positioning method, which offers low computational complexity and strong adaptability to beam shape, is currently the core measurement method during the laser acquisition phase. However, due to various interference factors encountered in practical tests, this algorithm often falls short of meeting the extremely high requirements.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
Boston University, Boston, USA.
Individuals with "agrammatic" receptive aphasia have long been known to rely on semantic plausibility rather than syntactic cues when interpreting sentences. In contrast to early interpretations of this pattern as indicative of a deficit in syntactic knowledge, a recent proposal views agrammatic comprehension as a case of "noisy-channel" language processing with an increased expectation of noise in the input relative to healthy adults. Here, we investigate the nature of the noise model in aphasia and whether it is adapted to the statistics of the environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!