Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As first shown by H. S. Green in 1952, the entropy of a classical fluid of identical particles can be written as a sum of many-particle contributions, each of them being a distinctive functional of all spatial distribution functions up to a given order. By revisiting the combinatorial derivation of the entropy formula, we argue that a similar correlation expansion holds for the entropy of a crystalline system. We discuss how one- and two-body entropies scale with the size of the crystal, and provide fresh numerical data to check the expectation, grounded in theoretical arguments, that both entropies are extensive quantities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597117 | PMC |
http://dx.doi.org/10.3390/e22091024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!