In recent years, there has been increasing interest in the development of micron-scale devices utilizing thermal gradients to manipulate molecules and colloids, and to measure their thermophoretic properties quantitatively. Various devices have been realized, such as on-chip implements, micro-thermogravitational columns and other micron-scale thermophoretic cells. The advantage of the miniaturized devices lies in the reduced sample volume. Often, a direct observation of particles using various microscopic techniques is possible. On the other hand, the small dimensions lead to some technical problems, such as a precise temperature measurement on small length scale with high spatial resolution. In this review, we will focus on the "state of the art" thermophoretic micron-scale devices, covering various aspects such as generating temperature gradients, temperature measurement, and the analysis of the current micron-scale devices. We want to give researchers an orientation for their development of thermophoretic micron-scale devices for biological, chemical, analytical, and medical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597233 | PMC |
http://dx.doi.org/10.3390/e22090950 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!