We establish the similarity in two model-based reconstructions of the coupling between the polar magnetic fields of the Sun represented by the solar faculae time series. The reconstructions are inferred from the pair of the coupled oscillators modelled with the Van der Pol and Kuramoto equations. They are associated with the substantial simplification of solar dynamo models and, respectively, a simple ad hoc model reproducing the phenomenon of synchronization. While the polar fields are synchronized, both of the reconstruction procedures restore couplings, which attain moderate values and follow each other rather accurately as the functions of time. We also estimate the evolution of the phase difference between the polar fields and claim that they tend to move apart more quickly than approach each other.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597218PMC
http://dx.doi.org/10.3390/e22090945DOI Listing

Publication Analysis

Top Keywords

polar magnetic
8
magnetic fields
8
van der
8
der pol
8
pol kuramoto
8
polar fields
8
dynamics phase
4
phase synchronization
4
synchronization solar
4
polar
4

Similar Publications

NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules.

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!