In this paper, we consider an information bottleneck (IB) framework for semi-supervised classification with several families of priors on latent space representation. We apply a variational decomposition of mutual information terms of IB. Using this decomposition we perform an analysis of several regularizers and practically demonstrate an impact of different components of variational model on the classification accuracy. We propose a new formulation of semi-supervised IB with hand crafted and learnable priors and link it to the previous methods such as semi-supervised versions of VAE (M1 + M2), AAE, CatGAN, etc. We show that the resulting model allows better understand the role of various previously proposed regularizers in semi-supervised classification task in the light of IB framework. The proposed IB semi-supervised model with hand-crafted and learnable priors is experimentally validated on MNIST under different amount of labeled data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597214PMC
http://dx.doi.org/10.3390/e22090943DOI Listing

Publication Analysis

Top Keywords

semi-supervised classification
12
learnable priors
8
semi-supervised
6
variational bottleneck
4
bottleneck semi-supervised
4
classification
4
classification paper
4
paper consider
4
consider bottleneck
4
bottleneck framework
4

Similar Publications

Sharing cooking recipes is a great way to exchange culinary ideas and provide instructions for food preparation. However, categorizing raw recipes found online into appropriate food genres can be challenging due to a lack of adequate labeled data. In this study, we present a dataset named the "Assorted, Archetypal, and Annotated Two Million Extended (3A2M+) Cooking Recipe Dataset" that contains two million culinary recipes labeled in respective categories with extended named entities extracted from recipe descriptions.

View Article and Find Full Text PDF

In biomedical studies, gene-environment (G-E) interactions have been demonstrated to have important implications for analyzing disease outcomes beyond the main G and main E effects. Many approaches have been developed for G-E interaction analysis, yielding important findings. However, hierarchical multi-label classification, which provides insightful information on disease outcomes, remains unexplored in G-E analysis literature.

View Article and Find Full Text PDF

Introduction: In clinical, the echocardiogram is the most widely used for diagnosing heart diseases. Different heart diseases are diagnosed based on different views of the echocardiogram images, so efficient echocardiogram view classification can help cardiologists diagnose heart disease rapidly. Echocardiogram view classification is mainly divided into supervised and semi-supervised methods.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) analysis offers tremendous potential for addressing various biological questions, with one key application being the annotation of query datasets with unknown cell types using well-annotated external reference datasets. However, the performance of existing supervised or semi-supervised methods largely depends on the quality of source data. Furthermore, these methods often struggle with the batch effects arising from different platforms when handling multiple reference or query datasets, making precise annotation challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!