How to predict the evolution of ecosystems is one of the numerous questions asked of ecologists by managers and politicians. To answer this we will need to give a scientific definition to concepts like sustainability, integrity, resilience and ecosystem health. This is not an easy task, as modern ecosystem theory exemplifies. Ecosystems show a high degree of complexity, based upon a high number of compartments, interactions and regulations. The last two decades have offered proposals for interpretation of ecosystems within a framework of thermodynamics. The entrance point of such an understanding of ecosystems was delivered more than 50 years ago through Schrödinger's and Prigogine's interpretations of living systems as "negentropy feeders" and "dissipative structures", respectively. Combining these views from the far from equilibrium thermodynamics to traditional classical thermodynamics, and ecology is obviously not going to happen without problems. There seems little reason to doubt that far from equilibrium systems, such as organisms or ecosystems, also have to obey fundamental physical principles such as mass conservation, first and second law of thermodynamics. Both have been applied in ecology since the 1950s and lately the concepts of exergy and entropy have been introduced. Exergy has recently been proposed, from several directions, as a useful indicator of the state, structure and function of the ecosystem. The proposals take two main directions, one concerned with the exergy stored in the ecosystem, the other with the exergy degraded and entropy formation. The implementation of exergy in ecology has often been explained as a translation of the Darwinian principle of "survival of the fittest" into thermodynamics. The fittest ecosystem, being the one able to use and store fluxes of energy and materials in the most efficient manner. The major problem in the transfer to ecology is that thermodynamic properties can only be calculated and not measured. Most of the supportive evidence comes from aquatic ecosystems. Results show that natural and culturally induced changes in the ecosystems, are accompanied by a variations in exergy. In brief, ecological succession is followed by an increase of exergy. This paper aims to describe the state-of-the-art in implementation of thermodynamics into ecology. This includes a brief outline of the history and the derivation of the thermodynamic functions used today. Examples of applications and results achieved up to now are given, and the importance to management laid out. Some suggestions for essential future research agendas of issues that needs resolution are given.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517404 | PMC |
http://dx.doi.org/10.3390/e22080820 | DOI Listing |
Nat Commun
December 2024
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
Temperature and nutrients are known as crucial drivers for the variations of bacterial community structure and functions in oceans and lakes. However, their significance and mechanisms in influencing the bacterial community structure and function in mountain stream remain unclear. In this study, we investigated the spatiotemporal patterns of the bacterial communities and the main environmental factors in the Taizicheng River, a high-latitude mountainous stream, to reveal the main driving factors for sedimental bacterial communities.
View Article and Find Full Text PDFAbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
Carbonate radical (CO) is inevitably produced in advanced oxidation processes (AOPs) when addressing real-world aqueous environments, yet it often goes unnoticed due to its relatively lower reactivity. In this study, we emphasized the pivotal role of CO in targeting the elimination of contaminants by contrasting it with conventional reactive oxygen species (ROSs) and assessing the removal of sulfamethazine (SMT). Similar to singlet oxygen (O), CO shows a preference for electron-rich organic compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!