The Relativistic Boltzmann Equation and Two Times.

Entropy (Basel)

School of Physics, Tel Aviv University, Ramat Aviv 69978, Israel.

Published: July 2020

We discuss a covariant relativistic Boltzmann equation which describes the evolution of a system of particles in spacetime evolving with a universal invariant parameter τ . The observed time of Einstein and Maxwell, in the presence of interaction, is not necessarily a monotonic function of τ . If t ( τ ) increases with τ , the worldline may be associated with a normal particle, but if it is decreasing in τ , it is observed in the laboratory as an antiparticle. This paper discusses the implications for entropy evolution in this relativistic framework. It is shown that if an ensemble of particles and antiparticles, converge in a region of pair annihilation, the entropy of the antiparticle beam may decreaase in time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818102PMC
http://dx.doi.org/10.3390/e22080804DOI Listing

Publication Analysis

Top Keywords

relativistic boltzmann
8
boltzmann equation
8
equation times
4
times discuss
4
discuss covariant
4
covariant relativistic
4
equation describes
4
describes evolution
4
evolution system
4
system particles
4

Similar Publications

The Thermodynamics of the Van Der Waals Black Hole Within Kaniadakis Entropy.

Entropy (Basel)

November 2024

Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan.

In this work, we have studied the thermodynamic properties of the Van der Waals black hole in the framework of the relativistic Kaniadakis entropy. We have shown that the black hole properties, such as the mass and temperature, differ from those obtained by using the the Boltzmann-Gibbs approach. Moreover, the deformation κ-parameter changes the behavior of the Gibbs free energy via introduced thermodynamic instabilities, whereas the emission rate is influenced by κ only at low frequencies.

View Article and Find Full Text PDF

Relativistic theory of the viscosity of fluids across the entire energy spectrum.

Phys Rev E

November 2024

Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy and Institute of Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

The shear viscosity is a fundamental transport property of matter. Here we derive a general theory of the viscosity of gases based on the relativistic Langevin equation (deduced from a relativistic Lagrangian) and nonaffine linear response theory. The proposed relativistic theory is able to recover the viscosity of nonrelativistic classical gases, with all its key dependencies on mass, temperature, particle diameter, and Boltzmann constant, in the limit of Lorentz factor γ=1.

View Article and Find Full Text PDF

The structural, electronic, optical, thermoelectric, and magnetic properties of the Perovskite PrFeO: DFT and Monte Carlo simulations.

J Mol Model

September 2024

Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Av. Ibn Batouta, B. P. 1014, Rabat, Morocco.

Context: Nowadays, Perovskite materials with diverse compositions and structures have garnered significant attention for their potential applications across various industrial and technological fields. Here, we investigated the structural, electronic, optical, thermodynamic, thermoelectric, and magnetic properties of perovskite PrFeO using density functional theory and Monte Carlo simulations. The optimization results demonstrate that the ferromagnetic phase is more stable than the antiferromagnetic phase.

View Article and Find Full Text PDF

Exploration of Free Energy Surface of the Au Nanocluster at Finite Temperature.

Molecules

July 2024

Coordinación de Investigación y Desarrollo Tecnológico, Universidad Politécnica de Tapachula, Carretera Tapachula a Puerto Madero km. 24, Tapachula 30830, Chiapas, Mexico.

The first step in comprehending the properties of Au clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero temperature, leaving many properties unexplored. This study explored the potential and free energy surface of the neutral Au nanocluster at a finite temperature, employing a genetic algorithm coupled with DFT and nanothermodynamics.

View Article and Find Full Text PDF

Relativistic Roots of -Entropy.

Entropy (Basel)

May 2024

Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

The axiomatic structure of the κ-statistcal theory is proven. In addition to the first three standard Khinchin-Shannon axioms of continuity, maximality, and expansibility, two further axioms are identified, namely the self-duality axiom and the scaling axiom. It is shown that both the κ-entropy and its special limiting case, the classical Boltzmann-Gibbs-Shannon entropy, follow unambiguously from the above new set of five axioms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!