A New Adaptive Synergetic Control Design for Single Link Robot Arm Actuated by Pneumatic Muscles.

Entropy (Basel)

Ministry of Trade, General Company for Grain Processing, Baghdad 10001, Iraq.

Published: June 2020

This paper suggests a new control design based on the concept of Synergetic Control theory for controlling a one-link robot arm actuated by Pneumatic artificial muscles (PAMs) in opposing bicep/tricep positions. The synergetic control design is first established based on known system parameters. However, in real PAM-actuated systems, the uncertainties are inherited features in their parameters and hence an adaptive synergetic control algorithm is proposed and synthesized for a PAM-actuated robot arm subjected to perturbation in its parameters. The adaptive synergetic laws are developed to estimate the uncertainties and to guarantee the asymptotic stability of the adaptive synergetic controlled PAM-actuated system. The work has also presented an improvement in the performance of proposed synergetic controllers (classical and adaptive) by applying a modern optimization technique based on Particle Swarm Optimization (PSO) to tune their design parameters towards optimal dynamic performance. The effectiveness of the proposed classical and adaptive synergetic controllers has been verified via computer simulation and it has been shown that the adaptive controller could cope with uncertainties and keep the controlled system stable. The proposed optimal Adaptive Synergetic Controller (ASC) has been validated with a previous adaptive controller with the same robot structure and actuation, and it has been shown that the optimal ASC outperforms its opponent in terms of tracking speed and error.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517262PMC
http://dx.doi.org/10.3390/e22070723DOI Listing

Publication Analysis

Top Keywords

adaptive synergetic
24
synergetic control
16
control design
12
robot arm
12
adaptive
9
arm actuated
8
actuated pneumatic
8
synergetic
8
parameters adaptive
8
synergetic controllers
8

Similar Publications

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

This study suggests an enhanced version of the adaptive fuzzy fast terminal synergetic controller (AF-FTSC) for controlling the uncertain DC/DC buck converter based on the synergetic theory of control (STC) and newly developed terminal attractor technique (TAT). The benefits of the proposed SC algorithm involve the features of finite-time convergence, unaffected by parameter variations, and chattering-free phenomenon. A type-1 fuzzy logic system (T1-FLS) make the considered controller more robust and is utilized to estimate the undefined converter nonlinear dynamics without resorting to the usual linearization and simplifications of the converter model.

View Article and Find Full Text PDF

Global climate change and rapid urbanization have increasingly intensified extreme rainfall events and surface runoff, posing significant challenges to urban hydrological security. Synergetic Grey-Green Infrastructure (SGGI) has been widely applied to enhance stormwater management in urban areas. However, current research primarily focused on optimizing and evaluating either grey infrastructure (GREI) or green infrastructure (GI) under single rainfall event, neglecting the non-stationary impacts of long-term climate change on infrastructure performance.

View Article and Find Full Text PDF

Matching P- and N-type Organic Electrochemical Transistor Performance Enables a Record High-gain Complementary Inverter.

Adv Mater

December 2024

State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

The charge transport of channel materials in n-type organic electrochemical transistors (OECTs) is greatly limited by the adverse effects of electrochemical doping, posing a long-standing puzzle for the community. Herein, an n-type conjugated polymer with glycolated side chains (n-PT3) is introduced. This polymer can adapt to electrochemical doping and create more organized nanostructures, mitigating the adverse effects of electrochemical doping.

View Article and Find Full Text PDF

Background: Smoking while using contraception containing ethinylestradiol increases the risk of cardiovascular diseases. Therefore, it is especially important to stimulate women who use these contraceptives to quit smoking.

Objectives: This study aimed to examine the role of risk perception and coping in relation to the intention of these women to quit smoking, using the Protection Motivation Theory as the theoretical foundation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!