The informational re-interpretation of the basic laws of the mechanics exploiting the Landauer principle is suggested. When a physical body is in rest or it moves rectilinearly with the constant speed, zero information is transferred; thus, the informational affinity of the rest state and the rectilinear motion with a constant speed is established. Inertial forces may be involved in the erasure/recording of information. The analysis of the minimal Szilard thermal engine as seen from the noninertial frame of references is carried out. The Szilard single-particle minimal thermal engine undergoes isobaric expansion relative to accelerated frame of references, enabling the erasure of 1 bit of information. The energy Δ spent by the inertial force for the erasure of 1 bit of information is estimated as Δ Q ≅ 5 3 k B T ¯ , which is larger than the Landauer bound but qualitatively is close to it. The informational interpretation of the equivalence principle is proposed: the informational content of the inertial and gravitational masses is the same.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517165 | PMC |
http://dx.doi.org/10.3390/e22060631 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!