Energy Dissipation and Decoherence in Solid-State Quantum Devices: Markovian versus non-Markovian Treatments.

Entropy (Basel)

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Published: April 2020

The design and optimization of new-generation solid-state quantum hardware absolutely requires reliable dissipation versus decoherence models. Depending on the device operational condition, the latter may range from Markov-type schemes (both phenomenological- and microscopic- like) to quantum-kinetic approaches. The primary goal of this paper is to review in a cohesive way virtues versus limitations of the most popular approaches, focussing on a few critical issues recently pointed out (see, e.g., Phys. Rev. B , 125140 (2014); Eur. Phys. J. B , 250 (2017)) and linking them within a common framework. By means of properly designed simulated experiments of a prototypical quantum-dot nanostructure (described via a two-level electronic system coupled to a phonon bath), we shall show that both conventional (i.e., non-Lindblad) Markov models and density-matrix-based non-Markov approaches (i.e., quantum-kinetic treatments) may lead to significant positivity violations. While for the former case the problem is easily avoidable by choosing genuine Lindblad-type dissipation models, for the latter, a general strategy is still missing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516970PMC
http://dx.doi.org/10.3390/e22040489DOI Listing

Publication Analysis

Top Keywords

solid-state quantum
8
energy dissipation
4
dissipation decoherence
4
decoherence solid-state
4
quantum devices
4
devices markovian
4
markovian versus
4
versus non-markovian
4
non-markovian treatments
4
treatments design
4

Similar Publications

The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.

View Article and Find Full Text PDF

The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.

View Article and Find Full Text PDF

Carbon quantum dot-anchored polyaniline on electrospun carbon nanofibers as freestanding electrodes for symmetric solid-state supercapacitors.

Dalton Trans

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

A binder-free and freestanding electrode was designed by uniformly immobilizing carbon quantum dot (CQD)-anchored polyaniline (PANI) heterostructures onto electrospun carbon nanofibers (CNFs) a facile hierarchical assembly process. The fabricated freestanding CNF/PANI/CQD electrode exhibits a unique three-dimensional (3D) network nanostructure, which accelerates ion migration between the interior and surface of the electrode, thereby enhancing its charging and discharging performance. Moreover, the functional groups on the surface of CQDs could anchor PANI through possible chemical bonding, which not only improves the stability of the PANI/CQD heterojunction but also creates an additional conductive channel for the PANI polymer.

View Article and Find Full Text PDF

Emission Tuning of Nonconventional Luminescent Materials via Cluster Engineering.

Small

January 2025

Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China.

Nonconventional Luminescent Materials (NLMs) with distinctive optical properties are garnering significant attention. A key challenge in their practical application lies in precisely controlling their emission behavior, particularly achieving excitation wavelength-independent emission, which is paramount for accurate chemical sensing. In this study, NLMs (Y1, Y2, Y3, and Y4) are synthesized via a click reaction, and it is found that excitation wavelength-dependent emission correlates with molecular cluster formation.

View Article and Find Full Text PDF

Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!