Weyl Prior and Bayesian Statistics.

Entropy (Basel)

School of Mathematics and Statistics, Carlton University, Ottawa, ON K1S 5B6, Canada.

Published: April 2020

When using Bayesian inference, one needs to choose a prior distribution for parameters. The well-known Jeffreys prior is based on the Riemann metric tensor on a statistical manifold. Takeuchi and Amari defined the α -parallel prior, which generalized the Jeffreys prior by exploiting a higher-order geometric object, known as a Chentsov-Amari tensor. In this paper, we propose a new prior based on the Weyl structure on a statistical manifold. It turns out that our prior is a special case of the α -parallel prior with the parameter α equaling - n , where is the dimension of the underlying statistical manifold and the minus sign is a result of conventions used in the definition of α -connections. This makes the choice for the parameter α more canonical. We calculated the Weyl prior for univariate Gaussian and multivariate Gaussian distribution. The Weyl prior of the univariate Gaussian turns out to be the uniform prior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516948PMC
http://dx.doi.org/10.3390/e22040467DOI Listing

Publication Analysis

Top Keywords

weyl prior
12
statistical manifold
12
prior
10
jeffreys prior
8
prior based
8
-parallel prior
8
prior univariate
8
univariate gaussian
8
weyl
4
prior bayesian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!