Shannon Entropy in Configuration Space for Ni-Like Isoelectronic Sequence.

Entropy (Basel)

College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Published: December 2019

Discrete Shannon entropy was introduced in view of the mathematical properties of multiconfiguration methods and then used to interpret the information in atomic states expressed by the multiconfiguration Dirac-Hartree-Fock wavefunction for Ni-like isoelectronic sequence. Moreover, the relationship between the concepts, including sudden change of Shannon entropy, information exchange, eigenlevel anticrossing, and strong configuration interaction, was clarified by induction on the basis of the present calculation of the energy structure for Ni-like isoelectronic sequence. It was found that there is an interesting connection between the change of Shannon entropies and eigenlevel anticrossings, along with the nuclear charge Z, which is helpful to conveniently locate the position of eigenlevel anticrossings and information exchanging and understand them from the point of view of information, besides the traditional physical concepts. Especially, it is concluded that in a given configuration space eigenlevel anticrossing is a sufficient and necessary condition for the sudden change of Shannon entropy, which is also a sufficient condition for information exchange.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516455PMC
http://dx.doi.org/10.3390/e22010033DOI Listing

Publication Analysis

Top Keywords

shannon entropy
16
ni-like isoelectronic
12
isoelectronic sequence
12
change shannon
12
configuration space
8
sudden change
8
eigenlevel anticrossing
8
eigenlevel anticrossings
8
sufficient condition
8
shannon
5

Similar Publications

Yukawa potential and Hulthẻn potential are very useful potential models with applications in different areas of physics. The present study examined theoretic measure and thermodynamic properties of energy levels and wave functions for a combination of these two potentials. The effect of screening parameter on Fisher information and Shannon entropy as well as the effect of temperature on the various thermodynamic properties of the combined potentials and its subsets potentials are well studied.

View Article and Find Full Text PDF

Using Energetic Information Quantities from Density Functional Theory to Simultaneously Identify Both Covalent and Noncovalent Interactions.

Chemphyschem

January 2025

University of North Carolina, Research Computing Center, 211 Manning Drive, 27599-3420, Chapel Hill, UNITED STATES OF AMERICA.

Covalent bonding and noncovalent interactions are important chemical concepts and how to identify them has been of current interest in the literature. Within the framework of density functional theory (DFT), we recently proposed a few qualitative descriptors to categorize different types of interactions with Pauli energy and its derivatives. In this work, we expand the scope by including the quantities derived from energetic information, which were recently proposed and thoroughly investigated by us from the framework of information-theoretic approach (ITA) in DFT.

View Article and Find Full Text PDF

In deep learning, achieving high performance on image classification tasks requires diverse training sets. However, the current best practice$\unicode{x2013}$maximizing dataset size and class balance$\unicode{x2013}$does not guarantee dataset diversity. We hypothesized that, for a given model architecture, model performance can be improved by maximizing diversity more directly.

View Article and Find Full Text PDF

The paper analyzes the problem of entropy in the moments of transition from a normal economic situation (2015-2019) to the Pandemic period (2020-2021) and the period of Russia's attack on Ukraine (2022-2023). The research in the article is based on the analysis of electricity, oil, coal, and gas prices in 27 countries of the European Union and Norway. The daily data cover the period from January 1, 2015, to March 30, 2023, and were analyzed using two-dimensional sets of electricity and commodity prices.

View Article and Find Full Text PDF

Atom's Dynamics and Crystal Structure: An Ordinal Pattern Method.

J Phys Chem A

January 2025

Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.

The ubiquitous nature of thermal fluctuations poses a limitation on the identification of crystal structures. However, the trajectory of an atom carries a fingerprint of its surroundings. This rationalizes the search for a method that can determine the local atomic configuration via the analysis of the movement of an individual atom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!