The effects of low-color-temperature dual-primary-color light-emitting diodes on three kinds of retinal cells.

J Photochem Photobiol B

Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, Jiangxi 330006, China. Electronic address:

Published: January 2021

Long-term illumination of the retina with blue-light-excited phosphor-converted light-emitting diodes (LEDs) may result in decreased retinal function, even if the levels of blue light emitted are low. New low-color-temperature dual-primary-color LEDs have been developed that are composed of only two LED chips: a red chip and a yellow chip. These LEDs are expected to become a new type of healthy lighting source because they do not emit blue light, they lack phosphor, and they solve the problem of low efficiency encountered with phosphor-converted low-color-temperature LEDs. Many studies have indicated that these new low-color-temperature LEDs are likely to have therapeutic effects. However, the biological safety of these LEDs needs to be explored before the therapeutic effects are explored. Therefore, this experiment was conducted to investigate the effects of the new low-color-temperature LEDs and fluorescent white LEDs on three types of retinal cells. We observed that the viability and numbers of retinal cells decreased gradually with increasing LED color temperature. The new low-color-temperature LEDs caused less death and adverse effects on proliferation than the fluorescent white LEDs. After irradiation with high-color-temperature LEDs, the expression of Zonula Occludens-1 (ZO-1) was decreased and discontinuous in ARPE-19 cells; the stress protein hemeoxygenase-1 (HO-1) was upregulated in R28 cells; and glial fibrillary acidic protein (GFAP) and vimentin were upregulated in rMC-1 cells. We therefore conclude that the new white LEDs cause almost no damage to retinal cells and reduce the potential human health risks of chronic exposure to fluorescent white LEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2020.112099DOI Listing

Publication Analysis

Top Keywords

retinal cells
16
low-color-temperature leds
16
white leds
16
leds
13
fluorescent white
12
effects low-color-temperature
8
low-color-temperature dual-primary-color
8
light-emitting diodes
8
blue light
8
therapeutic effects
8

Similar Publications

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Neutrophil extracellular traps potentiate effector T cells via endothelial senescence in uveitis.

JCI Insight

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China.

Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases.

View Article and Find Full Text PDF

Downregulation of MerTK in circulating T cells of patients with non-proliferative diabetic retinopathy.

Front Endocrinol (Lausanne)

January 2025

Department of Ophthalmology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Objective: To explore the differential gene expression in peripheral blood immune cells of individuals with type 2 diabetes mellitus (DM), comparing those with and without non-proliferative diabetic retinopathy (NPDR).

Methods: From a pool of 126 potential participants, 60 were selected for detailed analysis. This group included 12 healthy donors (HDs), 22 individuals with DM, and 26 with NPDR.

View Article and Find Full Text PDF

Amyloid β (Aβ) has emerged as a pathophysiological driver in age-related macular degeneration (AMD), emphasizing its significance in the aetiology of this prevalent sight-threatening condition. The multifaceted nature of AMD pathophysiology, presumably involving diverse retinal cascades, corresponds with the complexity of Aβ-induced retinopathy. Therefore, targeting a broad array of pathogenic processes holds promise for therapeutic intervention in AMD-associated retinal pathology.

View Article and Find Full Text PDF

Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy.

J Nanobiotechnology

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!