Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites.

Pharmacol Res

Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: February 2021

Inflammatory bowel diseases (IBD) are kind of recurrent inflammatory issues that occur in the gastrointestinal tract, and currently clinical treatment is still unideal due to the complex pathogenesis of IBD. Basically, gut barrier dysfunction is triggered by gut microbiota dysbiosis that is closely associated with the development of IBD, we thus investigated the therapeutic capacity of berberine (BBR) to improve the dysregulated gut microbiota, against IBD in rats, using a combinational strategy of targeted metabolomics and 16 s rDNA amplicon sequencing technology. Expectedly, our data revealed that BBR administration could greatly improve the pathological phenotype, gut barrier disruption, and the colon inflammation in rats with dextran sulfate sodium (DSS)-induced colitis. In addition, 16S rDNA-based microbiota analysis demonstrated that BBR could alleviate gut dysbiosis in rats. Furthermore, our targeted metabolomics analysis illustrated that the levels of microbial tryptophan catabolites in the gastrointestinal tract were significantly changed during the development of the colitis in rats, and BBR treatment can significantly restore such changes of the tryptophan catabolites accordingly. At last, our in vitro mechanism exploration was implemented with a Caco-2 cell monolayer model, which verified that the modulation of the dysregulated gut microbiota to change microbial metabolites coordinated the improvement effect of BBR on gut barrier disruption in the colitis, and we also confirmed that the activation of AhR induced by microbial metabolites is indispensable to the improvement of gut barrier disruption by BBR. Collectively, BBR has the capacity to treat DSS-induced colitis in rats through the regulation of gut microbiota associated tryptophan metabolite to activate AhR, which can greatly improve the disrupted gut barrier function. Importantly, our finding elucidated a novel mechanism of BBR to improve gut barrier function, which holds the expected capacity to promote the BBR derived drug discovery and development against the colitis in clinic setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2020.105358DOI Listing

Publication Analysis

Top Keywords

gut barrier
24
gut microbiota
16
tryptophan catabolites
12
barrier disruption
12
gut
11
bbr
9
microbial tryptophan
8
gastrointestinal tract
8
bbr improve
8
dysregulated gut
8

Similar Publications

Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper.

Fish Shellfish Immunol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, P.R. China. Electronic address:

The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count.

View Article and Find Full Text PDF

L-Carnitine is widely recognized for its involvement in lipid metabolism, but its effects on muscle quality and gut health in carp have not been well studied. The research aimed to investigate how L-carnitine influences muscle quality and intestinal health in high-fat-fed carp. The study was separated into four groups that received either the standard diet, a high-fat diet (HFD), or a HFD supplemented with 500 mg/kg L-carnitine (LLC), or a HFD supplemented with 1000 mg/kg L-carnitine (HLC) for 56 days.

View Article and Find Full Text PDF

Application of Chinese Medicine in Treatment of Ulcerative Colitis and Elucidation of Relevant Mechanisms.

Chin J Integr Med

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.

Ulcerative colitis (UC) is a chronic, non-specific intestinal disease of unknown etiology, with high incidence rates worldwide. At present, Western medicine treatments have been associated with more adverse effects and poor efficacy. Chinese medicine (CM) is commonly used as an adjuvant treatment for the unique advantages in regulating immune function, repairing intestinal mucosa, and alleviating intestinal inflammation.

View Article and Find Full Text PDF

The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma.

View Article and Find Full Text PDF

Lactobacillus gasseri prevents ibrutinib-associated atrial fibrillation through butyrate.

Europace

January 2025

Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.

Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. Utilizing 16S rRNA gene sequencing, fecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!