Purpose: To investigate a planning technique that can possibly reduce low-to-intermediate dose spillage (measured by R50%, D2cm values) in lung SBRT plans.
Materials And Methods: Dose falloff outside the target was studied retrospectively in 102 SBRT VMAT plans of lung tumor. Plans having R50% and/or D2cm higher than recommended tolerances in RTOG protocols 0813 and 0915 were replanned with new optimization constraints using novel shell structures and novel constraints. Violations in the RTOG R50% value can be rectified with a dose constraint to a novel shell structure ("OptiForR50"). The construction of structure OptiForR50% and the novel optimization criteria translate the RTOG goals for R50% into direct inputs for the optimizer. Violations in the D2cm can be rectified using constraints on a 0.5 cm thick shell structure with inner surface 2cm from the PTV surface. Wilcoxon signed-rank test was used to compare differences in dose conformity, volume of hot spots, R50%, D2cm of the target in addition to the OAR doses. A two-sided P-value of 0.05 was used to assess statistical significance.
Results: Among 102 lung SBRT plans with PTV sizes ranging from 5 to 179 cc, 32 plans with violations in R50% or D2cm were reoptimized. The mean reduction in R50% (4.68 vs 3.89) and D2cm (56.49 vs 52.51) was statistically significant both having P < 0.01. Target conformity index, volume of 105% isodose contour outside PTV, normal lung V20, and mean dose to heart and aorta were significantly lowered with P < 0.05.
Conclusion: The novel planning methodology using multiple shells including the novel OptiForR50 shell with precisely calculated dimensions and optimizer constraints lead to significantly lower values of R50% and D2cm and lower dose spillage in lung SBRT plans. All plans were successfully brought into the zone of no RTOG violations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856511 | PMC |
http://dx.doi.org/10.1002/acm2.13113 | DOI Listing |
Radiol Phys Technol
January 2025
Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.
Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.
Front Oncol
December 2024
Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Background: This study aimed to investigate the effect of couch rotation angles on non-coplanar volumetric modulated arc therapy (ncVMAT) plan for stereotactic body radiotherapy (SBRT) in lung cancer patients and to evaluate the feasibility of clinically applying ncVMAT for SBRT.
Methods: Twenty-four lung cancer patients with a single lesion eligible for SBRT were enrolled in the study. Seven dual partial-arc VMAT plans with varying couch angles were designed for every patient.
J Clin Med
December 2024
Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
The standard of care for early-stage NSCLC has historically been surgical resection. Given the association of lung cancer with smoking, a large number of early-stage patients also have active smoking-related medical comorbidities such as COPD precluding surgery. The current approach for treating such inoperable patients is frequently considered to be stereotactic body radiation therapy (SBRT).
View Article and Find Full Text PDFCancers (Basel)
December 2024
Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy.
Stereotactic body radiotherapy has been established as a viable treatment option for inoperable early-stage non-small cell lung cancer or secondary lesions mainly in oligoprogressive/oligometastatic scenarios. Treating lesions in the so-called "no flight zone" has always been challenging and conflicting data never cleared how to safely treat these lesions. This is truer considering ultra-central lesions, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!