Effects of ozonation on disinfection by-product formation potentials and biostability in a pilot-scale drinking water treatment plant with micro-polluted water.

Environ Technol

Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, People's Republic of China.

Published: August 2021

The accelerated urbanization in China has caused intensified micro-pollution problems for drinking water sources, severely challenging drinking water treatment efficiencies and its biostability. This study mainly investigated the effects of ozonation on disinfection by-product formation potentials (DBPFPs) and biological dissolved organic carbon (BDOC) in a pilot-scale ozonation-biological activated carbon advanced drinking water treatment plant with micro-polluted raw water. The results indicated that the micro-polluted water would be effectively treated in the advanced treatment processes with DBPFPs significantly eliminated. The total removal rates of trihalomethane formation potentials (THMFPs) and haloacetic acid formation potentials (HAAFPs) increased with the elevated ozone dosage to finally a relatively stable stage, and the maximum removal rates of 77.3% and 57.0%, respectively, were achieved at the ozone dosage of 2 mg/L. The bromine incorporation in total THMFPs (TTHMFPs) was dramatically suppressed after integrated advanced treatment processes, while that in total HAAFPs (THAAFPs) was promoted with the corresponding increment of up to 25.3% for bromine incorporation factor, which caused relatively high brominated HAAFP proportions in the treated water than in the raw water. In addition, the BDOC generation rate and THAAFP removal rate during the post-ozonation treatment displayed apparent positive correlation, and a similar relationship was observed for the BDOC degradation rate and TTHMFP removal rate during the BAC treatment in the studied ozone dosage (1 ∼ 5 mg/L). The findings strongly implied a promising alternative to measure DBPFP removal rate instead of BDOC level for more sensitive and convenient monitoring of the biostability in the reclaimed water.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2020.1829083DOI Listing

Publication Analysis

Top Keywords

formation potentials
16
drinking water
16
water treatment
12
ozone dosage
12
removal rate
12
water
10
effects ozonation
8
ozonation disinfection
8
disinfection by-product
8
by-product formation
8

Similar Publications

Short Aromatic Blocks Enhance Styrene Conversion in Polymer Cubosome Formation via Polymerization-Induced Self-Assembly.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.

Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!