A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Defect-Induced Atomic Doping in Transition Metal Dichalcogenides via Liquid-Phase Synthesis toward Efficient Electrochemical Activity. | LitMetric

Transition metal dichalcogenides (TMDs), due to their fascinating properties, have emerged as potential next-generation semiconducting nanomaterials across diverse fields of applications. When combined with other material systems, precise control of the intrinsic properties of the TMDs plays a vital role in maximizing their performance. Defect-induced atomic doping through introduction of a chalcogen vacancy into the TMDs lattices is known to be a promising strategy for modulating their characteristic properties. As a result, there is a need to develop tunable and scalable synthesis routes to achieve vacancy-modulated TMDs. Herein, we propose a facile liquid-phase ligand exchange approach for scalable, uniform, and vacancy-tunable synthesis of TMDs films. Varying the relative molar ratio of the chalcogen to transition metal precursors enabled the modulation of the chalcogen vacancy concentrations without necessitating additional post-treatments. When employed as the electrocatalyst in the hydrogen evolution reaction (HER), the vacancy-modulated TMDs, exhibiting a synergetic effect on the energy level matching to the reduction potential of water and optimized free energy differences in the HER pathways, showed a significant enhancement in the hydrogen production the improved charge transfer kinetics and increased active sites. The proposed approach for synthesizing tunable vacancy-modulated TMDs with wafer-scale synthesis capability is, therefore, promising for better practical applications of TMDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c06783DOI Listing

Publication Analysis

Top Keywords

transition metal
12
vacancy-modulated tmds
12
defect-induced atomic
8
atomic doping
8
metal dichalcogenides
8
tmds
8
chalcogen vacancy
8
doping transition
4
dichalcogenides liquid-phase
4
synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!