Cinnamate derivatives are very useful as UV protectors in nature and as sunscreen reagents in daily life. They convert harmful UV energy to thermal energy through effective nonradiative decay (NRD) including trans → cis photoisomerization. However, the mechanism is not simple because different photoisomeirzation routes have been observed for different substituted cinnamates. Here, we theoretically examined the substitution effects at the phenyl ring of methylcinnamate (MC), a non-substituted cinnamate, on the electronic structure and the NRD route involving trans → cis isomerization based on time-dependent density functional theory. A systematic reaction pathway search using the single-component artificial force-induced reaction method shows that the very efficient photoisomerization route of MC can be essentially described as "1ππ* (trans) → 1nπ* → T1 (3ππ*) → S0 (trans or cis)". We found that for efficient 1ππ* (trans) → 1nπ* internal conversion (IC), MC should have the substituent at the appropriate position of the phenyl ring to stabilize the highest occupied π orbital. Substitution at the para position of MC slightly lowers the 1ππ* state energy and photoisomerization occurs via a slightly less efficient "1ππ* (trans) → 3nπ* → T1 (3ππ*) → S0 (trans or cis)" pathway. Substitution at the meta or ortho positions of MC significantly lowers the 1ππ* state energy so that the energy barrier of IC (1ππ* → 1nπ*) becomes very high. This substitution leads to a much longer 1ππ* state lifetime than that of MC and para-substituted MC, and a change in the dominant photoisomerization route to "1ππ* (trans) → C[double bond, length as m-dash]C bond twisting on 1ππ* → S0 (trans or cis)". As a whole, the "1ππ* → 1nπ*" IC observed in MC is the most important initial step for the rapid change of UV energy to thermal energy. We also found that the stabilization of the π orbital (i) minimizes the energy gap between 1ππ* and 1nπ* at the 1ππ* minimum and (ii) makes the 0-0 level of 1ππ* higher than 1nπ* as observed in MC. These MC-like relationships between the 1ππ* and 1nπ* energies should be ideal to maximize the "1ππ* → 1nπ*" IC rate constant according to Marcus theory.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp04402dDOI Listing

Publication Analysis

Top Keywords

trans →
24
15
photoisomerization route
12
"1ππ* trans
12
→ 1nπ*
12
→ trans
12
trans cis"
12
1ππ* state
12
1ππ*
10
trans
9

Similar Publications

Study protocol: multi-centre, randomised controlled clinical trial exploring stromal targeting in locally advanced pancreatic cancer; STARPAC2.

BMC Cancer

January 2025

Barts Cancer Institute and Wolfson Institute of Public Health, Mary University of London, John Vane Science Centre, Charterhouse Square, London, Queen, EC1M 6BQ, UK.

Background: Pancreatic cancer (PDAC: pancreatic ductal adenocarcinoma, the commonest form), a lethal disease, is best treated with surgical excision but is feasible in less than a fifth of patients. Around a third of patients presentlocally advanced, inoperable, non-metastatic (laPDAC), whose stadrd of care is palliative chemotherapy; a small minority are down-sized sufficiently to enable surgical excision. We propose a phase II clinical trial to test whether a combination of standard chemotherapy (gemcitabine & nab-Paclitaxel: GEM-NABP) and repurposing All Trans Retinoic Acid (ATRA) to target the stroma may extend progression-free survival and enable successful surgical resection for patients with laPDAC, since data from phase IB clinical trial demonstrate safety of GEM-NABP-ATRA combination to patients with advanced PDAC with potential therapeutic benefit.

View Article and Find Full Text PDF

The Acute Promyelocytic Leukemia Asian Consortium analyzed a contemporaneous cohort of newly-diagnosed APL patients treated with and without frontline arsenic trioxide (ATO) in six centers. The objectives were to define the impact of ATO on early deaths and relapses, and its optimal positioning in the overall treatment strategy. In a 21.

View Article and Find Full Text PDF

In bacteria and eukaryotic organelles of prokaryotic origin, ATP-dependent proteases are crucial for regulating protein quality control through substrate unfolding and degradation. Understanding the mechanism and regulation of this key cellular process could prove instrumental in developing therapeutic strategies. Very recently, cryo-electron microscopy structural studies have shed light on the functioning of AAA+ proteases, including membrane-bound proteolytic complexes.

View Article and Find Full Text PDF
Article Synopsis
  • - Membrane fusion, crucial for processes like synaptic transmission, relies on the assembly of SNARE complexes, driven by various proteins that facilitate their formation.
  • - This study highlights the essential roles of NSF (a AAA+ protein) and SNAP in preparing syntaxin clusters before fusion, indicating their involvement in maintaining SNARE protein quality and organization.
  • - By using cryo-EM, researchers detailed how NSF and SNAP interact with syntaxin, revealing that sequential ATP hydrolysis is vital for the disassembly of SNARE complexes, suggesting these clusters act as reservoirs for efficient fusion.
View Article and Find Full Text PDF

A diverse array of plant aromatic compounds contributes to the tremendous chemical diversity in the plant kingdom that cannot be seen in microbes or animals. Such chemodiversity of aromatic natural products has emerged, occasionally in a lineage-specific manner, to adopt to challenging environmental niches, as various aromatic specialized metabolites play indispensable roles in plant development and stress responses (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!