The global COVID-19 pandemic has changed many aspects of daily lives. Wearing personal protective equipment, especially respirators (face masks), has become common for both the public and medical professionals, proving to be effective in preventing spread of the virus. Nevertheless, a detailed understanding of respirator filtration-layer internal structures and their physical configurations is lacking. Here, we report three-dimensional (3D) internal analysis of N95 filtration layers via X-ray tomography. Using deep learning methods, we uncover how the distribution and diameters of fibers within these layers directly affect contaminant particle filtration. The average porosity of the filter layers is found to be 89.1%. Contaminants are more efficiently captured by denser fiber regions, with fibers <1.8 μm in diameter being particularly effective, presumably because of the stronger electric field gradient on smaller diameter fibers. This study provides critical information for further development of N95-type respirators that combine high efficiency with good breathability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c04230DOI Listing

Publication Analysis

Top Keywords

filter layers
8
deep learning
8
three-dimensional analysis
4
analysis particle
4
particle distribution
4
distribution filter
4
layers
4
layers inside
4
inside n95
4
n95 respirators
4

Similar Publications

Aero-TiO three-dimensional nanoarchitecture for photocatalytic degradation of tetracycline.

Sci Rep

December 2024

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.

One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.

View Article and Find Full Text PDF

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

Deep Convolutional Neural Networks (DCNNs), due to their high computational and memory requirements, face significant challenges in deployment on resource-constrained devices. Network Pruning, an essential model compression technique, contributes to enabling the efficient deployment of DCNNs on such devices. Compared to traditional rule-based pruning methods, Reinforcement Learning(RL)-based automatic pruning often yields more effective pruning strategies through its ability to learn and adapt.

View Article and Find Full Text PDF

A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications.

Biomed Mater

December 2024

G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis; Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Engesserstr. 4, Freiburg im Breisgau, 79108, GERMANY.

Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g.

View Article and Find Full Text PDF

All-dielectric metasurface (ADM) absorbers driven by quasi-bound states in the continuum (BIC) are critical for high-performance optoelectronic devices due to their ability to offer high -factor absorption. However, these all-dielectric metasurfaces usually require the aid of degenerate critical coupling schemes or back-metal reflective layers to achieve high absorption, which often suffers from limitations such as sensitive geometrical parameters, ohmic losses, and low -factors. This work presents an ADM for high- near-perfect light absorption, which consists of double Si nanorods and SiO/TaO multilayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!