Excessive oxidative stress in cancer cells can induce cancer cell death. Anticancer activity and drug resistance of chemotherapy are closely related to the redox state of tumor cells. Herein, five lipophilic Pt(IV) prodrugs were synthesized on the basis of the most widely used anticancer drug cisplatin, whose anticancer efficacy and drug resistance are closely related to the intracellular redox state. Subsequently, a series of cisplatin-sensitive and drug-resistant cell lines as well as three patient-derived primary ovarian cancer cells have been selected to screen those prodrugs. To verify if the disruption of redox balance can be combined with these Pt(IV) prodrugs, we then synthesized a polymer with a diselenium bond in the main chain for encapsulating the most effective prodrug to form nanoparticles (NP(Se)s). NP(Se)s can efficiently break the redox balance simultaneously depleting GSH and augmenting ROS, thereby achieving a synergistic effect with cisplatin. In addition, genome-wide analysis RNA-seq was employed to provide a comprehensive understanding of the changes in transcriptome and the alterations in redox-related pathways in cells treated with NP(Se)s and cisplatin. Thereafter, patient-derived xenograft models of hepatic carcinoma (PDX) and multidrug-resistant lung cancer (PDX) were established to evaluate the therapeutic effect of NP(Se)s, and a significant antitumor effect was achieved on both models with NP(Se)s. Overall, this study provides a promising strategy to break the redox balance for maximizing the efficacy of platinum-based cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c06190 | DOI Listing |
Life Metab
February 2025
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.
View Article and Find Full Text PDFBiochimie
January 2025
Jagiellonian University Medical College, Faculty of Health Sciences, Department of Medical Physiology, Chair of Biomedical Sciences, 12 Michalowskiego st., 33-332 Cracow, Poland.
Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.
View Article and Find Full Text PDFSchizophr Bull
January 2025
Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States.
Background And Hypothesis: Convergent evidence shows the presence of brain metabolic abnormalities in psychotic disorders. This study examined brain reductive stress and energy metabolism in people with psychotic disorders with impaired or average range cognition. We hypothesized that global cognitive impairment would be associated with greater brain metabolic dysregulation.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant Biology, University of Szeged, Közép fasor 52., H6726 Szeged, Hungary.
The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!