Comprehensive genomic analysis of microenvironment phenotypes in ovarian cancer.

PeerJ

Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.

Published: November 2020

Background: Ovarian cancer is one of the leading causes of cancer-related death in women. The incidence of ovarian cancer is insidious, and the recurrence rate is high. The survival rate of ovarian cancer has not significantly improved over the past decade. Recently, immune checkpoint inhibitors such as those targeting CTLA-4, PD-1, or PD-L1 have been used to treat ovarian cancer. Therefore, a full analysis of the immune biomarkers associated with this malignancy is necessary.

Methods: In this study, we used data from The Cancer Genome Atlas (TCGA) database to analyze the infiltration patterns of specific immune cell types in tumor samples. Data from the Gene Expression Omnibus (GEO) database was used for external validation. According to the invasion patterns of immune cells, we divided the ovarian cancer microenvironment into two clusters: A and B. These tumor microenvironment (TME) subtypes were associated with genomic and clinicopathological characteristics. Subsequently, a random forest classification model was established. Differential genomic features, functional enrichment, and DNA methylation were analyzed between the two clusters. The characteristics of immune cell infiltration and the expression of immune-related cytokines or markers were analyzed. Somatic mutation analysis was also performed between clusters A and B. Finally, multivariate Cox analysis was used to analyze independent prognostic factors.

Results: The ovarian cancer TME cluster A was characterized by less infiltration of immune cells and sparse distribution and low expression of immunomodulators. In contrast, cytotoxic T cells and immunosuppressive cells were significantly increased in the ovarian cancer TME cluster B. Additionally, immune-related cytokines or markers, including IFN- and TNF-, were also expressed in large quantities. In total, 35 differentially methylated and expressed genes (DMEGs) were identified. Functional enrichment analyses revealed that the DMEGs in cluster B participated in important biological processes and immune-related pathways. The mutation load in cluster B was insignificantly higher than that of cluster A ( = 0.076). Multivariate Cox analysis showed that TME was an independent prognostic factor for ovarian cancer (hazard ratio: 1.33, 95% confidence interval: 1.01-1.75,  = 0.041).

Conclusion: This study described and classified basic information about the immune invasion pattern of ovarian cancer and integrated biomarkers related to different immunophenotypes to reveal interactions between ovarian cancer and the immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690309PMC
http://dx.doi.org/10.7717/peerj.10255DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
44
cancer
12
ovarian
11
immune
8
immune cell
8
immune cells
8
functional enrichment
8
immune-related cytokines
8
cytokines markers
8
multivariate cox
8

Similar Publications

Up to 90% of high-grade serous ovarian cancer (HGSC) patients will develop resistance to platinum-based chemotherapy, posing substantial therapeutic challenges due to a lack of universally druggable targets. Leveraging BenevolentAI's AI-driven approach to target discovery, we screened potential AI-predicted therapeutic targets mapped to unapproved tool compounds in patient-derived 3D models. This identified TNIK, which is modulated by NCB-0846, as a novel target for platinum-resistant HGSC.

View Article and Find Full Text PDF

Background: High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of all ovarian cancer-related deaths. Multiple studies have suggested that the fallopian tube epithelium (FTE) serves as the cell of origin of HGSOC. Phosphatase and tensin homolog () is a tumor suppressor and its loss is sufficient to induce numerous tumorigenic changes in FTE, including increased migration, formation of multicellular tumor spheroids (MTSs), and ovarian colonization.

View Article and Find Full Text PDF

Background: Ovarian cancer is the leading cause of death among gynaecological cancers. The identification of the fallopian tube epithelium as the origin of most ovarian cancers introduces a novel prevention strategy by removing the fallopian tubes during an already indicated abdominal surgery for another reason, also known as an opportunistic salpingectomy. This preventive opportunity is evidence based, recommended and established at the time of gynaecologic surgery in many countries worldwide.

View Article and Find Full Text PDF

'Bone Health-Across a Woman's Lifespan'.

Clin Endocrinol (Oxf)

January 2025

Centre for Endocrinology & Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia.

Despite a high burden of osteoporosis and minimal trauma fractures worldwide, there is still a treatment gap in timely diagnosis and optimal treatment. There is also a lack of international consensus and guidelines on the management of bone fragility in premenopausal women. This review article provides an overview of the current understanding of factors impacting women's bone health across the adult lifespan, as well as dilemmas in the diagnosis, assessment and management of osteoporosis in premenopausal and postmenopausal women, premature ovarian insufficiency and bone health following breast cancer.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) remains a lethal gynecological malignancy with an alarming mortality rate, primarily attributed to delayed diagnosis and a lack of effective treatment modalities. Accumulated evidence highlights the pivotal role of reprogrammed lipid metabolism in fueling OC progression, however, the intricate underlying molecular mechanisms are not fully elucidated.

Methods: DLAT expression was assessed in OC tissues and cell lines by immunohistochemistry, western blot and qRT-PCR analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!