Purpose: Early deep-learning-based image denoising techniques mainly focused on a fully supervised model that learns how to generate a clean image from the noisy input (noise2clean: N2C). The aim of this study is to explore the feasibility of the self-supervised methods (noise2noise: N2N and noiser2noise: Nr2N) for PET image denoising based on the measured PET data sets by comparing their performance with the conventional N2C model.
Methods: For training and evaluating the networks, F-FDG brain PET/CT scan data of 14 patients was retrospectively used (10 for training and 4 for testing). From the 60-min list-mode data, we generated a total of 100 data bins with 10-s duration. We also generated 40-s-long data by adding four non-overlapping 10-s bins and 300-s-long reference data by adding all list-mode data. We employed U-Net that is widely used for various tasks in biomedical imaging to train and test proposed denoising models.
Results: All the N2C, N2N, and Nr2N were effective for improving the noisy inputs. While N2N showed equivalent PSNR to the N2C in all the noise levels, Nr2N yielded higher SSIM than N2N. N2N yielded denoised images similar to reference image with Gaussian filtering regardless of input noise level. Image contrast was better in the N2N results.
Conclusion: The self-supervised denoising method will be useful for reducing the PET scan time or radiation dose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704825 | PMC |
http://dx.doi.org/10.1007/s13139-020-00667-2 | DOI Listing |
Sci Rep
December 2024
Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.
Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.
View Article and Find Full Text PDFJ Xray Sci Technol
December 2024
School of Electrical and Information Engineering, Tianjin University, Nankai District, Tianjin, China.
Background: Airport security is still a main concern for assuring passenger safety and stopping illegal activity. Dual-energy X-ray Imaging (DEXI) is one of the most important technologies for detecting hidden items in passenger luggage. However, noise in DEXI images, arising from various sources such as electronic interference and fluctuations in X-ray intensity, can compromise the effectiveness of object identification.
View Article and Find Full Text PDFNeural Netw
December 2024
School of Information Science and Technology, Taishan University, Taian, 271000, Shandong, China.
Network intrusion detection (NID) is an effective manner to guarantee the security of cyberspace. However, the scale of normal network traffic is much larger than intrusion traffic (i.e.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
School of Information Science and Engineering, Yunnan University, Kunming, 650091, Yunnan, China.
The rapid development of spatial transcriptomics (ST) technology has provided unprecedented opportunities to understand tissue relationships and functions within specific spatial contexts. Accurate identification of spatial domains is crucial for downstream spatial transcriptomics analysis. However, effectively combining gene expression data, histological images and spatial coordinate data to identify spatial domains remains a challenge.
View Article and Find Full Text PDFMed Phys
December 2024
Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Assam, India.
Background: Measurement noise often leads to inaccurate shear wave phase velocity estimation in ultrasound shear wave elastography. Filtering techniques are commonly used for denoising the shear wavefields. However, these filters are often not sufficient, especially in fatty tissues where the signal-to-noise ratio (SNR) can be very low.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!