Acutemonocytic leukemia (AMoL) is a distinct subtype of acute myeloid leukemia (AML) with poor prognosis. However, the molecular mechanisms and key regulators involved in the global regulation of gene expression levels in AMoL are poorly understood. In order to elucidate the role of microRNAs (miRNAs/miRs) and transcription factors (TFs) in AMoL pathogenesis at the network level, miRNA and TF expression level profiles were systematically analyzed by miRNA sequencing and TF array, respectively; this identified 285 differentially expressed miRNAs and 139 differentially expressed TFs in AMoL samples compared with controls. By combining expression level profile data and bioinformatics tools available for predicting TF and miRNA targets, a comprehensive AMoL-specific miRNA-TF-mediated regulatory network was constructed. A total of 26 miRNAs and 23 TFs were identified as hub nodes in the network. Among these hubs, miR-29b-3p, and were determined to be potential AMoL regulators, and were subsequently extracted to construct sub-networks. A hypothetical pathway model was also proposed for miR-29b-3p to reveal the potential co-regulatory mechanisms of miR-29b-3p, and in AMoL. The present study provided an effective approach to discover critical regulators via a comprehensive regulatory network in AMoL, in addition to enhancing understanding of the pathogenesis of this disease at the molecular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709554 | PMC |
http://dx.doi.org/10.3892/ol.2020.12311 | DOI Listing |
Mol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, 22030, Turkey.
Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!