Mild Physical Activity Does Not Improve Spatial Learning in a Virtual Environment.

Front Behav Neurosci

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.

Published: November 2020

It is well-established that physical exercise in humans improves cognitive functions, such as executive functions, pattern separation, and working memory. It is yet unknown, however, whether spatial learning, long known to be affected by exercise in rodents, is also affected in humans. In order to address this question, we recruited 20 healthy young male adults (18-30 years old) divided into exercise and control groups ( = 10 in each group). The exercise group performed three sessions per week of mild-intensity aerobic exercise for 12 weeks, while the control group was instructed not to engage in any physical activity. Both groups performed maximal oxygen uptake (VO) tests to assess their cardiovascular fitness at baseline and every 4 weeks through the 12 weeks of the training program. The effects of mild aerobic exercise were tested on performance in two different virtual reality (VR)-based spatial learning tasks: (1) virtual Morris water maze (VMWM) and (2) virtual Radial arm water maze (VRAWM). Subjects were tested in both tasks at baseline prior to the training program and at the end of 12 weeks training program. While the mild-intensity aerobic exercise did not affect subjects' VO parameters, mean time to anaerobic threshold increased for the exercise group compared with control. No effect was observed, however, on performance in the VMWM or VRAWM between the two groups. Based on these results, we suggest that mild-intensity aerobic exercise does not improve spatial learning and memory in young, healthy adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705229PMC
http://dx.doi.org/10.3389/fnbeh.2020.584052DOI Listing

Publication Analysis

Top Keywords

spatial learning
16
aerobic exercise
16
mild-intensity aerobic
12
training program
12
exercise
9
physical activity
8
improve spatial
8
exercise group
8
weeks training
8
water maze
8

Similar Publications

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Cardiac MR image reconstruction using cascaded hybrid dual domain deep learning framework.

PLoS One

January 2025

Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.

Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.

View Article and Find Full Text PDF

Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex.

Cell Rep

January 2025

Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:

Task learning involves learning associations between stimuli and outcomes and storing these relationships in memory. While this information can be reliably decoded from population activity, individual neurons encoding this representation can drift over time. The circuit or molecular mechanisms underlying this drift and its role in learning are unclear.

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Introduction: With the increasing impact of hepatocellular carcinoma (HCC) on society, there is an urgent need to propose new HCC diagnostic biomarkers and identification models. Histone lysine lactylation (Kla) affects the prognosis of cancer patients and is an emerging target in cancer treatment. However, the potential of Kla-related genes in HCC is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!