Dysdercus koenigii, a serious cotton-staining insect pest in many countries, has shown high resistance to imidacloprid, a systemic neonicotinoid insecticide used to control sap-sucking pests. With the aim of creating an effective management strategy, the biological traits of susceptible (SS) and imidacloprid-resistant (Imida-RS) D. koenigii, as well as their reciprocal crosses (CR1 and CR2), were investigated here using a life table established on age, stage, and two-sex patterns. Compared with SS D. koenigii, Imida-RS and CR1 strains had lower relative fitness (0.80 and 0.47, respectively) and fecundity (eggs per female); prolonged egg duration and a prolonged adult preoviposition period; shorter nymphal duration, male/female total longevity, and oviposition days, and a shorter total preoviposition period. However, there were no differences among strains in nymphal survival rates and female ratio. The CR2 D. koenigii had similar relative fitness value (1.09), suggested no fitness cost in most of the parameters. Demographic parameters, including net reproductive rate, were lower in the Imida-RS strain than in SS and CR2 D. koenigii. Similarly, the Imida-RS and CR1 strains had shorter generation time and doubling time, lower reproductive value and life expectancy relative to the SS and CR2 D. koenigii. In addition, age-specific fecundity was negatively affected in the CR1 strain compared with the other strains. These findings could help facilitate the development of rational D. koenigii control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.129118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!