Arsenic contaminated groundwater is seen as one of the most critical routes of human exposure to geogenic pollutants. Recently around 40 million inhabitants of the world are living in the hazardous zone having groundwater As level >50 μg/L. As problem of groundwater in Bhagirathi-Ganga deltaic plain is well-known for over the last three decades. Hydrogeochemical analytical data related to the As concentration had been analysed to identify the As sources in groundwater of the active floodplains of the Ganga basin in Northern India. The natural background level of As was also estimated using Grubb's test and cumulative probability plots. The natural background level is a crucial parameter for identifying and quantifying groundwater pollution and assessing measures to control pollution. The anthropogenic addition of As in groundwater was separated by the estimated inflection point. The results show that the highest As concentration, which is 8-times more than the permissible limit, is observed at Gyantoli village in Begusarai district in Bihar state. Groundwater is alkaline with a high concentration of HCO as compared to other chemical parameters. Further, it indicates the dominance of carbonate weathering and relatively high pH values (range: 8.00-9.00) helps to release As in groundwater. The reducing environment of the aquifer system becomes oxic at the shallow depth due to comparatively shallow groundwater level, and impressive water level fluctuation resulting in vertical mixing of anthropogenic As contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.129096 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!