Aim: The manuscript aims to describe the techniques of modification of gums and mucilages and their effect on hydrophilicity and drug release.
Discussion: The interest is increased in the fields of polymers which are obtained from natural origin and used in the preparation of pharmaceuticals. Mucilage and gum are natural materials widely used in the preparation of novel dosage and conventional dosage forms. They are used in the pharmaceutical industry for various purposes like suspending, emulsifying, bio-adhesive, binding, matrix-forming, extended release and controlled release agent. Gum and mucilage are biodegradable, less toxic, cheap and easily available. Moreover, mucilage and gum can be changed to acquire tailored materials for the delivery of drugs and allow them to compete with commercially available synthetic products. These polysaccharides have unique swellability in an aqueous medium that can exert a retardant effect on drug release or act as a super disintegrant, depending on the concentration utilized in the preparation. Drug release mechanism from hydrophilic matrices consisting of gums and mucilages is based on solvent penetration-induced polymer relaxation, diffusion of entrapped drug followed by degradation or erosion of the matrix.
Conclusion: The present manuscript highlights the advantages, modifications of gum and mucilage, their effects on hydrophilicity and drug release as well as aspects of the natural gums which can be assumed to be bifunctional excipient because of their concentration-dependent effect on drug release and their high degree of swellability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1872211314666201204160641 | DOI Listing |
Handb Clin Neurol
January 2025
Department of Surgical Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy; Department of Neuroscience, Psychology Unit, University of Pisa Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy.
Insomnia disorder is a frequent sleep disorder leading to significant health and economic consequences. It has been proposed that individuals with insomnia may experience compromised deactivation systems of arousal, leading to a chronic state of hyperactivation of arousal known as hyperarousal, along with instability in the flip-flop system. Such disruptions may have a primarily impact on the sleep homeostatic drive process.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:
The development of a direct compression excipient with extended-release property is crucial for improving tablet manufacturing and drug delivery. This research focuses on developing a novel co-processed excipient composed of rice starch (RS), methylcellulose (MC), and colloidal silicon dioxide (CSD) using a wet granulation technique. The ratios of RS: MC (1.
View Article and Find Full Text PDFIntroduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!