Protein folding evolves by exploring the conformational space with a subtle balance between enthalpy and entropy changes which eventually leads to a decrease of free energy upon reaching the folded structure. A complete understanding of this process requires, therefore, a deep insight into both contributions to free energy. In this work, we clarify the role of entropy in favoring the stabilization of folded structures in polyalanine peptides with up to 12 residues. We use a novel method referred to as K2V that allows us to obtain the potential-energy landscapes in terms of residue conformations extracted from molecular dynamics simulations at conformational equilibrium and yields folding thermodynamic magnitudes, which are in agreement with the experimental data available. Our results demonstrate that the folded structures of the larger polyalanine chains are stabilized with respect to the folded structures of the shorter chains by both an energetic contribution coming from the formation of the intramolecular hydrogen bonds and an entropic contribution coming from an increase of the entropy of the solvent with approximate weights of 60 and 40%, respectively, thus unveiling a key piece in the puzzle of protein folding. In addition, the ability of the K2V method to provide the enthalpic and entropic contributions for individual residues along the peptide chain makes it clear that the energetic and entropic stabilizations are basically governed by the nearest neighbor residue conformations, with the folding propensity being rationalized in terms of triads of residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.0c01177 | DOI Listing |
Mol Cancer
December 2024
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.
Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:
Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2024
Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India. Electronic address:
Peptidyl prolyl cis/trans isomerases (PPIases), a ubiquitously distributed superfamily of enzymes, associated with signal transduction, trafficking, assembly, biofilm formation, stress tolerance, cell cycle regulation, gene expression and tissue regeneration, is a key regulator of metabolic disorders and microbial virulence. This review assumes an integrative approach, to provide a holistic overview of the structural and functional diversity of PPIases, examining their conformational dynamics, cellular distribution, and physiological significance. We explore their intricate involvement in cellular processes and virulence modulation in both eukaryotic and prokaryotic systems.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
In the relentless pursuit of unraveling the intricate pathophysiology of Alzheimer's disease (AD), amyloid β (Aβ) proteins emerge as focal points due to their pivotal role in disease progression. The pathological hallmark of AD involves the aberrant aggregation of Aβ peptides into amyloid fibrils, precipitating a cascade of neurodegenerative events culminating in cognitive decline and neuronal loss. This study adopts a computational framework to investigate the potential therapeutic efficacy of novel biosurfactants (BS) in mitigating Aβ fibril formation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:
Reactive oxygen species (ROS) scavenging is a viable approach to promote corneal epithelium wound healing. This study created a single-component hydrogel (HA Gel) with a novel dual-functionalized hyaluronic acid derivative (HA-GA-PBA) containing gallol and phenylboronic acid (PBA) moieties. Both of these moieties were dual-functional.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!