The objective of this study is to evaluate, through a systematic review of the scientific literature and meta-analysis, the applications of three-dimensional (3D) printing in the surgical treatment of complex fractures of the appendicular skeleton, mainly in terms of effectiveness and safety. A systematic review of the scientific literature was conducted in MEDLINE (PubMed) and the Cochrane Library combining different keywords. A specific methodological assessment scale was developed and applied to included papers. Ten studies were included; all of them were controlled trials, except for one retrospective observational cohort study. We observed statistically significant differences between the group that used 3D printing and the control group in terms of reduction in surgical time, reduction in the volume of blood lost during surgery and reduction in the number of intraoperative fluoroscopies, in favor of the 3D printing group. No statistically significant differences were observed in terms of fracture healing time, postoperative joint function, or postoperative complications. Meta-analysis revealed more favorable results for 3D-printing compared with conventional surgery, with the greatest difference observed for the number of intraoperative fluoroscopies. 3D printing might be considered effective and safe in the surgical treatment of anatomically complex appendicular skeleton fractures, in terms of reducing surgical time, lost blood volume, and radiation exposure of surgeons and patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.24939DOI Listing

Publication Analysis

Top Keywords

appendicular skeleton
12
systematic review
12
skeleton fractures
8
review scientific
8
scientific literature
8
surgical treatment
8
statistically differences
8
surgical time
8
number intraoperative
8
intraoperative fluoroscopies
8

Similar Publications

This article presents 582 bone scan images from 291 adult patients who attended the Nuclear Medicine Service at the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), Paraguay, between 2020 and 2024. The images were acquired using trimodal SPECT-CT-PET equipment, model AnyScan SCP, and the MEDISO brand. Approximately 20 mCi of technetium-99m methylene diphosphonate (Tc-MDP) was administered to each patient, producing whole-body planar images in anterior and posterior projections of the axial and appendicular skeleton with a resolution of 256 × 1024 pixels.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how the growth and calcification of the appendicular skeleton in the Raja asterias affects its movement in water, highlighting the link between bone structure and fin mechanics.
  • It identifies two growth patterns—crustal in larger skeletal parts and catenated in fin radials—showing how differences in development can influence fin flexibility and locomotion.
  • The results suggest that unique calcification patterns, especially in the pelvic fins, evolve to meet the mechanical needs of swimming, emphasizing the adaptability of Batoidea fins through their joint structures and specialized designs.
View Article and Find Full Text PDF

. Childhood brain tumor survivors (CCSs) are at high risk of developing metabolic syndrome (MetS) and sarcopenia. To date, a tool able to predict any body composition changes or detect them early and increased adiposity (and, therefore, increased likelihood of MetS onset) is still lacking in this population.

View Article and Find Full Text PDF

Bone lesions of the appendicular skeleton can be caused by primary benign or malignant tumors, metastases, osteomyelitis, or pseudotumors. Conventional radiography plays a crucial role in the initial assessment of osseous lesions and should not be underestimated even in this era of modern complex and advanced imaging technologies. Combined with patient age, clinical symptoms and biology, and lesion features including location, solitary versus multiplicity, density, margin (transitional zone evaluated with Lodwick-Madewell grading score), and, if present, the type of periosteal reaction and matrix mineralization can narrow the differential diagnosis or offer a likely diagnosis.

View Article and Find Full Text PDF

In mice, variability in adult bone size and density has been observed among common inbred strains. Also, in the group of genes regulating circadian rhythmicity in mice, so called clock genes, changes in body size and skeletal parameters have been noted in knockout mice. Here, we studied the size and density of prominent bones of the axial and appendicular skeleton of clock gene Period-1-deficient (Per1) mice by means of microcomputed tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!