The application of therapeutic T cells for a number of conditions has been developed over the past few decades with notable successes including donor lymphocyte infusions, virus-specific T cells and more recently CAR-T cell therapy. Primary immunodeficiencies are monogenetic disorders leading to abnormal development or function of the immune system. Haematopoietic stem cell transplantation and, in specific candidate diseases, haematopoietic stem cell gene therapy has been the only definitive treatment option so far. However, autologous gene-modified T cell therapy may offer a potential cure in conditions primarily affecting the lymphoid compartment. In this review we will highlight several T cell gene addition or gene-editing approaches in different target diseases with a focus on what we have learnt from clinical experience and promising preclinical studies in primary immunodeficiencies. Functional T cells are required not only for normal immune responses to infection (affected in CD40 ligand deficiency), but also for immune regulation [disrupted in IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-Linked) due to dysfunctional FOXP3 and CTLA4 deficiency] or cytotoxicity [defective in X-lymphoproliferative disease and familial haemophagocytic lymphohistiocytosis (HLH) syndromes]. In all these candidate diseases, restoration of T cell function by gene therapy could be of great value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bjh.17070 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, 313200, China.
Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!