Neuregulin-1 (NRG1) represents an important factor for multiple processes including neurodevelopment, brain functioning or cognitive functions. Evidence from animal research suggests an effect of NRG1 on the excitation-inhibition (E/I) balance in cortical circuits. However, direct evidence for the importance of NRG1 in E/I balance in humans is still lacking. In this work, we demonstrate the application of computational, biophysical network models to advance our understanding of the interaction between cortical activity observed in neuroimaging and the underlying neurobiology. We employed a biophysical neuronal model to simulate large-scale brain dynamics and to investigate the role of polymorphisms in the NRG1 gene (rs35753505, rs3924999) in n = 96 healthy adults. Our results show that G/G-carriers (rs3924999) exhibit a significant difference in global coupling (P = 0.048) and multiple parameters determining E/I-balance such as excitatory synaptic coupling (P = 0.047), local excitatory recurrence (P = 0.032) and inhibitory synaptic coupling (P = 0.028). This indicates that NRG1 may be related to excitatory recurrence or excitatory synaptic coupling potentially resulting in altered E/I-balance. Moreover, we suggest that computational modeling is a suitable tool to investigate specific biological mechanisms in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhaa339DOI Listing

Publication Analysis

Top Keywords

synaptic coupling
12
balance cortical
8
e/i balance
8
excitatory synaptic
8
excitatory recurrence
8
nrg1
5
brain network
4
network simulations
4
simulations indicate
4
indicate effects
4

Similar Publications

Exploring Serotonin-1A receptor function in the effects of buspirone on cognition by molecular receptor expression and EEG analytical studies.

Eur J Pharmacol

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.

Buspirone, a commonly prescribed medication for generalized anxiety disorder (GAD), is gaining attention for its narrow window of side effects such as lack of physical dependence, non-sedative properties as compared to other anxiolytic drugs. Its dose-specific therapeutic effects beyond anxiety highlights its clinical significance. Pharmacologically, buspirone activates serotonin-1A pre-synaptic autoreceptors and post-synaptic heteroreceptors which modulate serotonergic neurotransmission induced behavioral changes such as anxiolytic and nootropic effects.

View Article and Find Full Text PDF

GABAergic neurons in basal forebrain (BF) nuclei project densely to all layers of the mouse main olfactory bulb (OB), the first relay in odor information processing. However, BF projection neurons are diverse and the contribution of each subtype to odor information processing is not known. In the present study, we used retrograde and anterograde tracing methods together with whole-brain light-sheet analyses, patch-clamp recordings coupled with optogenetic and chemogenetic approaches during spontaneous odor discrimination, and go/no-go odor discrimination/learning tests to characterize the synaptic targets in the OB of BF calretinin-expressing (CR+) GABAergic cells and to reveal their functional implications.

View Article and Find Full Text PDF

MAPPING THE CEREBROSPINAL FLUID PROTEOME IN BIPOLAR DISORDER.

Biol Psychiatry

January 2025

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Background: Bipolar disorder (BD) is a severe psychiatric condition with unclear etiology and no established biomarkers. Here, we aimed to characterize the cerebrospinal fluid (CSF) proteome in euthymic BD individuals to identify potential protein biomarkers.

Methods: We employed nano-flow liquid chromatography coupled to high-resolution mass spectrometry to quantify over 2,000 CSF proteins in 374 individuals from two independent clinical cohorts (n=164+89 and 66+55 cases and controls, respectively).

View Article and Find Full Text PDF

Reconstitution of synaptic junctions orchestrated by teneurin-latrophilin complexes.

Science

January 2025

Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.

Synapses are organized by trans-synaptic adhesion molecules that coordinate assembly of pre- and postsynaptic specializations, which, in turn, are composed of scaffolding proteins forming liquid-liquid phase-separated condensates. Presynaptic teneurins mediate excitatory synapse organization by binding to postsynaptic latrophilins; however, the mechanism of action of teneurins, driven by extracellular domains evolutionarily derived from bacterial toxins, remains unclear. In this work, we show that only the intracellular sequence, a dimerization sequence, and extracellular bacterial toxin-derived latrophilin-binding domains of Teneurin-3 are required for synapse organization, suggesting that teneurin-induced latrophilin clustering mediates synaptogenesis.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!