Introduction: We have demonstrated that asymptomatic cerebral small vessel disease (cSVD) measured by white matter hyperintensity volume is associated with reduced manipulative manual dexterity on the Grooved Peg Board Test (GPBT) in middle-aged healthy individuals with a family history of early coronary artery disease. In this current study, we aim to identify the association of subcortical white matter microstructural impairment measured by diffusion tensor imaging, manual dexterity measured by GPBT and circulating serums ceramide, another marker for white matter injury. We hypothesize that lower regional fractional anisotropy (rFA) is associated with worse performance on GPBT and elevated serum ceramides in the same study population.

Methods: rFA of 48 regions representing the subcortical white matters were analyzed in GeneSTAR participants in addition to serum ceramides and GPBT scores. Unadjusted univariable analyses with Bonferroni correction for multiple comparisons were completed using Spearman correlation for testing the associations between ceramides, rFA of subcortical white matter, and GPBT performance. Subsequently, sensitivity analyses were performed after excluding the participants that had any physical limitation that may influence their performance on GPBT. Finally, in the adjusted analysis using generalized estimating equation, linear regression models were performed for the areas that met significance threshold in the unadjusted analyses.

Results: 112 subjects (age [49 ± 11], 51% female, 39.3% African American) were included. Adjusted analyses for the significant correlations that met the Bonferroni correction threshold in the unadjusted univariable analyses identified significant negative associations between rFA of the right fornix (RF) and log-GPBT score (β = -0.497, p = 0.037). In addition, rFA of RF negatively correlated with log serum ceramide levels (C18: β = -0.03, p = 0.003, C20: β = -0.0002, p = 0.004) and rFA of left genu of corpus callosum negatively correlated with log C18 level (β = -0.0103, p = 0.027).

Conclusions: These results demonstrate that subcortical microstructural white matter disruption is associated with elevated serum ceramides and reduced manual dexterity in a population with cSVD. These findings suggest that injury to white matter tracts undermines neural networks, with functional consequences in a middle-aged population with cardiovascular risk factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878290PMC
http://dx.doi.org/10.1159/000511937DOI Listing

Publication Analysis

Top Keywords

white matter
28
manual dexterity
16
serum ceramides
16
elevated serum
12
subcortical white
12
white
8
matter injury
8
associated reduced
8
reduced manual
8
cerebral small
8

Similar Publications

Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Purpose: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution -MRSI to accurately remove lipid and water signals while preserving the metabolite signal.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

Introduction: White matter hyperintensity volumes (WMHVs) are disproportionally prevalent in individuals with Alzheimer's disease (AD), potentially reflecting neurovascular injury. We quantify the association between AD polygenic risk score (AD-PRS) and WMHV, exploring single-nucleotide polymorphisms (SNPs) that are proximal to genes overexpressed in cerebrovascular cell species.

Methods: In a UK-Biobank sub-sample (mean age = 64, range = 45-81 years), we associate WMHV with (1) AD-PRS estimated via SNPs across the genome (minus apolipoprotein E [APOE] locus) and (2) AD-PRS estimated with SNPs proximal to specific genes that are overexpressed in cerebrovascular cell species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!