Histone tails as signaling antennas of chromatin.

Curr Opin Struct Biol

Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada. Electronic address:

Published: April 2021

Histone tails, representing the N-terminal or C-terminal regions flanking the histone core, play essential roles in chromatin signaling networks. Intrinsic disorder of histone tails and their propensity for post-translational modifications allow them to serve as hubs in coordination of epigenetic processes within the nucleosomal context. Deposition of histone variants with distinct histone tail properties further enriches histone tails' repertoire in epigenetic signaling. Given the advances in experimental techniques and in silico modelling, we review the most recent data on histone tails' effects on nucleosome stability and dynamics, their function in regulating chromatin accessibility and folding. Finally, we discuss different molecular mechanisms to understand how histone tails are involved in nucleosome recognition by binding partners and formation of higher-order chromatin structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096652PMC
http://dx.doi.org/10.1016/j.sbi.2020.10.018DOI Listing

Publication Analysis

Top Keywords

histone tails
16
histone
9
histone tails'
8
tails signaling
4
signaling antennas
4
chromatin
4
antennas chromatin
4
chromatin histone
4
tails representing
4
representing n-terminal
4

Similar Publications

Histone N-tails modulate sequence-specific positioning of nucleosomes.

J Biol Chem

December 2024

National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Spatial organization of chromatin is essential for cellular functioning. However, the precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA still remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped in vivo.

View Article and Find Full Text PDF

Identification of modulators of the ALT pathway through a native FISH-based optical screen.

Cell Rep

December 2024

Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.

View Article and Find Full Text PDF

HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.

BMC Genomics

December 2024

Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.

Background: STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues.

Results: We describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed.

View Article and Find Full Text PDF

Histone H3 tail modifications required for meiosis in .

bioRxiv

December 2024

Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA.

Histone tail phosphorylation has diverse effects on a myriad of cellular processes, including cell division, and is highly conserved throughout eukaryotes. Histone H3 phosphorylation at threonine 3 (H3T3) during mitosis occurs at the inner centromeres and is required for proper biorientation of chromosomes on the mitotic spindle. While H3T3 is also phosphorylated during meiosis, a possible role for this modification has not been tested.

View Article and Find Full Text PDF

Objective: Hepatocellular carcinoma (HCC) is a highly fatal cancer. This study aims to investigate the underlying mechanism of tripartite motif-containing 22 (TRIM22) in HCC cell invasion and metastasis through the K (lysine) acetyltransferase 2A (KAT2A)/glutathione peroxidase 4 (GPX4) axis.

Methods: Human HCC cells BEL7405 were cultured and treated with MG-132, Ferrostain-1, pcDNA3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!