A comprehensive analytical process, from NPS threat identification to systematic screening: Method validation and one-year prevalence study.

Forensic Sci Int

Université du Québec à Trois-Rivières, Department of Chemistry, Biochemistry and Physics, 3351 Des Forges Blvd., Trois-Rivières, Québec, G9A 5H7, Canada; Université du Québec à Trois-Rivières, Forensic Research Group, 3351 des Forges Blvd., Trois-Rivières, Québec, G9A 5H7, Canada.

Published: January 2021

Several New Psychoactive Substances (NPS) enter the illicit drug market each year. This constant evolution of compounds to screen is challenging to law enforcement and drug chemists, and even more so to forensic toxicologists, who need to detect such compounds which might be at low concentrations in complex biological matrices. While some technological solutions are better suited than others to address such a challenge (e.g., high resolution mass spectrometry), laboratories with limited instrumental and financial resources are faced with a complex task: systematically screening for a rapidly evolving NPS panel using an accredited method run on standard equipment (e.g., liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)). This work presents a solution to this challenge: a complete workflow from the detection of a regional NPS threat to its implementation in a method accredited under the ISO 17025:2017 norm. Initial LC-MS/MS method included 55 NPS and metabolites (31 Novel Synthetic Opioids (NSO), 22 NSO metabolites and 2 designer benzodiazepines). Following their identification as relevant territorial threats, flualprazolam, then isotonitazene, were added to the contingent. By relying on development aiming for maximal integration to the current analysis workflow, systematic NPS screening using this method was easily implemented. Between March 2019 and March 2020, the 5 079 forensic cases analyzed in the province of Québec (Canada) revealed a NPS positivity rate of 3.4%. While 94% involved designer benzodiazepines, 5% involved NSO. This process, combining high efficiency, simple detection technology, ISO accreditation and rapid response to new threats resulted in a four-fold increase in NPS detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2020.110595DOI Listing

Publication Analysis

Top Keywords

nps
8
nps threat
8
screening method
8
mass spectrometry
8
designer benzodiazepines
8
method
5
comprehensive analytical
4
analytical process
4
process nps
4
threat identification
4

Similar Publications

Rationale: Fentanyl and fentanyl analogs continue to pose a serious threat to the public health. The vast number of fentanyl analogs emerging on the black-market call for optimized analytical methods for the detection, analysis, and characterization of these extremely dangerous drugs.

Methods: Atmospheric pressure solids analysis probe (ASAP) mass spectrometry was used for the rapid analysis of 250 synthetic opioid standards, including 211 fentanyl analogs, 32 non-fentanyl related opioids, and 8 fentanyl precursors.

View Article and Find Full Text PDF

Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.

ACS Appl Bio Mater

January 2025

Laboratório de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.

This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid.

View Article and Find Full Text PDF

This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).

View Article and Find Full Text PDF

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Decreasing the aggregation of photosensitizers to facilitate energy transfer for improved photodynamic therapy.

Nanoscale

January 2025

Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.

The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (O), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!