The partial response of chronic hepatitis B virus (CHB) patients to interferon-α (IFN-α) therapy remains elusive, which requires a better understanding of the involved molecular mechanism. In our study, bioinformatics analysis was applied to relate IFN-α regulated candidate genes and RNA editing sites by RNA sequencing. Mitochondrial antiviral signaling protein (MAVS) antiviral effect was confirmed in HepG2.2.15 cells and in two mouse models. The associations between polymorphisms in MAVS gene and response to IFN-α therapy were confirmed in CHB patients. We found that IFN-α downregulates MAVS via RNA editing that was mediated by adenosine deaminase acting on RNA (ADAR1). ADAR1 inhibited MAVS expression via a human antigen R (HuR)-mediated post-transcriptional regulation. MAVS exerted an antiviral activity and reduced the level of hepatitis B virus (HBV) markers in vitro and in vivo. IFN-α antiviral effects were significantly enhanced by MAVS co-transfection. Hepatitis B core protein (HBc) interacted with SP1 to inhibit the promoter activity of MAVS that regulates its expression. CHB patients with a rs3746662A allele had higher MAVS expression and thus were more responsive to IFN-α treatment. In this work, we demonstrated that the decrease of MAVS expression is mediated by the IFN-α-ADAR1 axis. This study also highlighted the potential for the clinical application of MAVS in combination with IFN-α for the treatment of HBV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934633 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2020.11.031 | DOI Listing |
Noncoding RNA
December 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA.
Cell and gene therapy (CGT) products are emerging and innovative biopharmaceuticals that hold promise for treating diseases that are otherwise beyond the scope of conventional medicines. The evolution of CGT from a research idea to a promising therapeutic product is due to the complementary advancements across various scientific disciplines. First, the innovations and advancements in gene editing and delivery technology have provided fundamental tools to manipulate genes and cells for therapeutic pursuits.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden.
Many Plasmodium genes remain uncharacterized due to low genetic tractability. Previous large-scale knockout screens have only been able to target about half of the genome in the more genetically tractable rodent malaria parasite Plasmodium berghei. To overcome this limitation, we have developed a scalable CRISPR system called P.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom.
Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices.
View Article and Find Full Text PDFNature
January 2025
Changping Laboratory, Beijing, The People's Republic of China.
The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs). Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants, establishing a foundation for mitochondrial disease mouse models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!