miR-127-3p Is an Epigenetic Activator of Myofibroblast Senescence Situated within the MicroRNA-Enriched Dlk1-Dio3‒Imprinted Domain on Mouse Chromosome 12.

J Invest Dermatol

Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany. Electronic address:

Published: April 2021

During wound healing, fibroblasts differentiate into nonproliferative contractile myofibroblasts, contribute to skin repair, and eventually undergo apoptosis or become senescent. MicroRNAs are post-transcriptional regulators of gene expression networks that control cell fate and survival and may also regulate senescence. In this study, we determined the regulated microRNAs in myofibroblasts isolated from wounds and analyzed their role in senescent myofibroblast formation. Transcriptome profiling showed that a 200 kilobase pair region of the Dlk1-Dio3‒imprinted domain on mouse chromosome 12 encodes for most of the upregulated microRNAs in the entire genome of mouse myofibroblasts. Among those, miR-127-3p induced a myofibroblast-like phenotype associated with a block in proliferation. Molecular analysis revealed that miR-127-3p induced a prolonged cell cycle arrest with unique molecular features of senescence, including the activation of the senescence-associated β-galactosidase, increase in p53 and p21 levels, inhibition of lamin B1, proliferation factors, and the production of senescence-associated inflammatory and extracellular matrix‒remodeling components. Hence, miR-127-3p emerges as an epigenetic activator regulating the transition from repair to remodeling during skin wound healing but may also induce age-related defects, pathological scarring, and fibrosis, all linked to myofibroblast senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2020.11.011DOI Listing

Publication Analysis

Top Keywords

epigenetic activator
8
myofibroblast senescence
8
dlk1-dio3‒imprinted domain
8
domain mouse
8
mouse chromosome
8
wound healing
8
mir-127-3p induced
8
mir-127-3p
4
mir-127-3p epigenetic
4
activator myofibroblast
4

Similar Publications

The pathogenesis of long COVID (LC) still presents many areas of uncertainty. This leads to difficulties in finding an effective specific therapy. We hypothesize that the key to LC pathogenesis lies in the presence of chronic functional damage to the main anti-inflammatory mechanisms of our body: the three reflexes mediated by the vagus nerve, the hypothalamic-pituitary-adrenal (HPA) hormonal axis, and the mitochondrial redox status.

View Article and Find Full Text PDF

Background/objectives: Schizophrenia is a complex mental disorder influenced by genetic and environmental factors, including dietary habits. Oxidative stress and inflammation play a crucial role in the pathophysiology of schizophrenia. Emerging research suggests that diet may affect schizophrenia through different biological mechanisms beyond oxidative stress and inflammation.

View Article and Find Full Text PDF

DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties.

View Article and Find Full Text PDF

The pathogenesis of many immune disorders is linked to regulatory macrophage dysfunction. The mechanism underlying it is unclear. The objective of this study is to examine the mechanism by which the PRKN ubiquitin protein ligase (PRKN) inhibits the development of regulatory macrophages (Mreg).

View Article and Find Full Text PDF

Deficiency of ATF2 retards senescence induced by replication stress and pamidronate in mouse jaw bone marrow stem cells.

Cell Signal

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The aging process is associated with a loss of bone mass and an accumulation of senescent cells, which is under epigenetic control. Morphological and molecular analysis revealed a notable reduction in bone mass and alveolar crest height in aged mice, accompanied by increased levels of senescent mouse jaw bone marrow stem cells (mJBMSCs). To investigate whether specific transcription factors are involved, assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed on mJBMSCs isolated from 2-, 4-, 8-, and 20-month-old mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!