Uranium directly interacts with the DNA repair protein poly (ADP-ribose) polymerase 1.

Toxicol Appl Pharmacol

Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA. Electronic address:

Published: January 2021

People living in southwest part of United States are exposed to uranium (U) through drinking water, air, and soil. U is radioactive, but independent of this radioactivity also has important toxicological considerations as an environmental metal. At environmentally relevant concentrations, U is both mutagenic and carcinogenic. Emerging evidence shows that U inhibits DNA repair activity, but how U interacts with DNA repair proteins is still largely unknown. Herein, we report that U directly interacts with the DNA repair protein, Protein Poly (ADP-ribose) Polymerase 1 (PARP-1) through direct binding with the zinc finger motif, resulting in zinc release from zinc finger and DNA binding activity loss of the protein. At the peptide level, instead of direct competition with zinc ion in the zinc finger motif, U does not show thermodynamic advantages over zinc. Furthermore, zinc pre-occupied PARP-1 zinc finger is insensitive to U treatment, but U bound to PARP-1 zinc finger can be partially replaced by zinc. These results provide mechanistic basis on molecular level to U inhibition of DNA repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775282PMC
http://dx.doi.org/10.1016/j.taap.2020.115360DOI Listing

Publication Analysis

Top Keywords

dna repair
20
zinc finger
20
interacts dna
12
zinc
10
directly interacts
8
repair protein
8
protein poly
8
poly adp-ribose
8
adp-ribose polymerase
8
finger motif
8

Similar Publications

Bioinformatics Analysis Reveals Microrchidia Family Genes as the Prognostic and Therapeutic Markers for Colorectal Cancer.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.

Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).

Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.

View Article and Find Full Text PDF

Introduction: Breast cancer is the predominant form of malignancy among women. Polymorphisms in DNA repair genes, such as X-ray repair cross complementing 3 (XRCC3), can influence an individual's capability to repair damaged DNA. This can result in genetic instability and potentially contribute to the development of cancer.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2.

View Article and Find Full Text PDF

Anaplastic thyroid carcinoma (ATC) is an aggressive cancer that requirements rapid diagnosis and multimodal treatment. Next-generation sequencing (NGS) aids in personalized therapies and improved trial enrollment. The role of liquid-based NGS in ATC remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!