Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Almost three decades ago Dr. Nikolaev and co-authors reported a remarkable finding that a single-course low-volume hemoperfusion through uncoated spherical activated carbon led to a significant increase in survival of dogs acutely irradiated with X-rays of the dose of 5.25 Gy (Artif. Organs. 1993; 17: 362-8). In those studies, the adsorptive detoxification, which is characteristic for carbon adsorbents, was less likely to play a predominant role in radioprotection, thus prompting the authors to assume that some other, unknown, mechanisms were involved. This article is aimed to interpret the radioprotective effect of activated carbon, based on the mounting evidence that it is capable of reducing the oxidative stress and promoting the recovery in various tissues and organs (including hematopoietic) with an active involvement of relatively radioresistant tissue-resident macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2020.110430 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!